1
|
Wu W, Gao C, Wu L, Gao C, Li J, Su Z, Zhong H, Xu M, Sun Z. Diagnostic accuracy of deep learning for the invasiveness assessment of ground-glass nodules with fine segmentation: a systematic review and meta-analysis. Quant Imaging Med Surg 2025; 15:2722-2738. [PMID: 40235789 PMCID: PMC11994546 DOI: 10.21037/qims-24-1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/24/2025] [Indexed: 04/17/2025]
Abstract
Background Accurate recognition of invasive lung adenocarcinoma (IAC) presenting as ground-glass nodules (GGNs) is crucial for guiding clinical decision-making and timely surgical intervention. This study aimed to systematically evaluate the diagnostic accuracy of deep learning (DL) models via fine nodule segmentation in assessing the invasiveness of lung adenocarcinoma. Methods Literature from the inception of the PubMed, Embase, Cochrane Library, and Web of Science databases was searched. Studies related to DL and nodule segmentation in diagnosing IAC were evaluated and included. Titles and abstracts were screened, and the Quality Assessment of Diagnostic Accuracy Studies 2 was used to assess the quality of the selected studies. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria of diagnostic tests were used to assess the certainty of evidence. Results Eight studies involving 5,281 nodules and 4,676 patients were included and analyzed. Meta-analysis showed that the combined sensitivity of DL for the diagnosis of IAC was 0.81 [95% confidence interval (CI): 0.73-0.87], while the specificity was 0.86 (95% CI: 0.80-0.90). The area under the summary receiver operating characteristic (SROC) curve was 0.90 (95% CI: 0.88-0.93), but the overall quality of the evidence was suboptimal. Conclusions DL and nodule segmentation demonstrated high accuracy in assessing lung adenocarcinoma invasiveness, but the certainty of the associated evidence was low. More large-scale, multicenter, high-quality diagnostic accuracy studies are needed to validate the performance and usefulness of DL in the assessment of lung adenocarcinoma invasiveness.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaying Li
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zihang Su
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haoyu Zhong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhichao Sun
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Vicente-Valor J, Tesolato S, Paz-Cabezas M, Gómez-Garre D, Ortega-Hernández A, de la Serna S, Domínguez-Serrano I, Dziakova J, Rivera D, Jarabo JR, Gómez-Martínez AM, Hernando F, Torres A, Iniesta P. Fecal Microbiota Strongly Correlates with Tissue Microbiota Composition in Colorectal Cancer but Not in Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:717. [PMID: 39859429 PMCID: PMC11766298 DOI: 10.3390/ijms26020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Microbiota could be of interest in the diagnosis of colorectal and non-small cell lung cancer (CRC and NSCLC). However, how the microbial components of tissues and feces reflect each other remains unknown. In this work, our main objective is to discover the degree of correlation between the composition of the tissue microbiota and that of the feces of patients affected by CRC and NSCLC. Specifically, we investigated tumor and non-tumor tissues from 38 recruited patients with CRC and 19 with NSCLC. DNA from samples was submitted for 16S rDNA metagenomic sequencing, followed by data analysis through the QIIME2 pipeline and further statistical processing with STATA IC16. Tumor and non-tumor tissue selected genera were highly correlated in both CRC and NSCLC (100% and 81.25%). Following this, we established tissue-feces correlations, using selected genera from a LEfSe analysis previously published. In CRC, we found a strong correlation between the taxa detected in feces and those from colorectal tissues. However, our data do not demonstrate this correlation in NSCLC. In conclusion, our findings strongly reinforce the utility of fecal microbiota as a non-invasive biomarker for CRC diagnosis, while highlighting critical distinctions for NSCLC. Furthermore, our data demonstrate that the microbiota components of tumor and non-tumor tissues are similar, with only minor differences being detected.
Collapse
Affiliation(s)
- Juan Vicente-Valor
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain; (J.V.-V.); (S.T.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
| | - Sofía Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain; (J.V.-V.); (S.T.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
| | - Mateo Paz-Cabezas
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Biomedical Research Networking Center in Cancer (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Cardiovascular Risk Group, Microbiota Laboratory, San Carlos Hospital, 28040 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28029 Madrid, Spain
| | - Adriana Ortega-Hernández
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Cardiovascular Risk Group, Microbiota Laboratory, San Carlos Hospital, 28040 Madrid, Spain
| | - Sofía de la Serna
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Jana Dziakova
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Daniel Rivera
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Jose-Ramón Jarabo
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Thoracic Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Ana-María Gómez-Martínez
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Thoracic Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Florentino Hernando
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Thoracic Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Antonio Torres
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain; (J.V.-V.); (S.T.)
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain; (M.P.-C.); (D.G.-G.); (A.O.-H.); (S.d.l.S.); (I.D.-S.); (J.D.); (D.R.); (J.-R.J.); (A.-M.G.-M.); (F.H.); (A.T.)
| |
Collapse
|
3
|
Yichu S, Fei L, Ying L, Youyou X. Potential of radiomics analysis and machine learning for predicting brain metastasis in newly diagnosed lung cancer patients. Clin Radiol 2024; 79:e807-e816. [PMID: 38395696 DOI: 10.1016/j.crad.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
AIM To explore the potential of utilising radiomics analysis and machine-learning models that incorporate intratumoural and peritumoural regions of interest (ROIs) for predicting brain metastasis (BM) in newly diagnosed lung cancer patients. MATERIALS AND METHODS The study comprised 183 lung cancer patients (training cohort: n=146; validation cohort: n=37) whose radiomics features were extracted from plain computed tomography (CT) images of the primary lesion. Four machine-learning algorithms (logistic regression [LR], support vector machine [SVM], k-nearest neighbour algorithm [KNN], and random forest [RF]) were employed to develop predictive models. Model diagnostic performance was assessed through receiver operating characteristic (ROC) analysis, and clinical utility was evaluated using decision curve analysis (DCA). Finally, the radiomics model's generalisation ability was further validated in the prediction of metachronous brain metastasis (MBM). RESULTS After feature screening, 22 radiomics features were identified as highly predictive, of which nine were derived from the peritumour region. All four machine-learning models demonstrated predictive capability, with SVM showing superior efficiency and robustness. The area under the ROC curve (AUC) of SVM was 0.918 in the training cohort and 0.901 in the validation cohort. DCA indicated the highest net benefit. Furthermore, the time-dependent ROC curve exhibited predictive efficacy for MBM occurrence across 1-, 2-, and 3-year follow-up periods, with all AUC values exceeding 0.7. CONCLUSION The optimal SVM model integrating intratumoural and peritumoural radiomics features was confirmed and defined as an imaging biomarker for predicting BM in newly diagnosed lung cancer patients, underscoring its potential to significantly impact clinical diagnosis and treatment.
Collapse
Affiliation(s)
- S Yichu
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China
| | - L Fei
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China
| | - L Ying
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, 222000, China
| | - X Youyou
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China.
| |
Collapse
|
4
|
Pan Z, Hu G, Zhu Z, Tan W, Han W, Zhou Z, Song W, Yu Y, Song L, Jin Z. Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models. Radiology 2024; 311:e232057. [PMID: 38591974 DOI: 10.1148/radiol.232057] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%-10.8%; sensitivity, 14%-39.1%; specificity, 5.5%-17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.
Collapse
Affiliation(s)
- Zhengsong Pan
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Ge Hu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhenchen Zhu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Weixiong Tan
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Wei Han
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhen Zhou
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Wei Song
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Yizhou Yu
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Lan Song
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| | - Zhengyu Jin
- From the Department of Radiology (Z.P., Z. Zhu, W.S., L.S., Z.J.), Medical Research Center (G.H.), State Key Laboratory of Complex Severe and Rare Disease (G.H.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China; 4 + 4 Medical Doctor Program (Z.P., Z. Zhu), Department of Epidemiology and Health Statistics (W.H.), Institute of Basic Medicine Sciences (W.H.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Deepwise AI Laboratory, Beijing Deepwise & League of PhD Technology, Beijing, China (W.T., Z. Zhou, Y.Y.); and Department of Computer Science, The University of Hong Kong, Hong Kong, China (Y.Y.)
| |
Collapse
|
5
|
De Biase A, Ma B, Guo J, van Dijk LV, Langendijk JA, Both S, van Ooijen PMA, Sijtsema NM. Deep learning-based outcome prediction using PET/CT and automatically predicted probability maps of primary tumor in patients with oropharyngeal cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107939. [PMID: 38008678 DOI: 10.1016/j.cmpb.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently, deep learning (DL) algorithms showed to be promising in predicting outcomes such as distant metastasis-free survival (DMFS) and overall survival (OS) using pre-treatment imaging in head and neck cancer. Gross Tumor Volume of the primary tumor (GTVp) segmentation is used as an additional channel in the input to DL algorithms to improve model performance. However, the binary segmentation mask of the GTVp directs the focus of the network to the defined tumor region only and uniformly. DL models trained for tumor segmentation have also been used to generate predicted tumor probability maps (TPM) where each pixel value corresponds to the degree of certainty of that pixel to be classified as tumor. The aim of this study was to explore the effect of using TPM as an extra input channel of CT- and PET-based DL prediction models for oropharyngeal cancer (OPC) patients in terms of local control (LC), regional control (RC), DMFS and OS. METHODS We included 399 OPC patients from our institute that were treated with definitive (chemo)radiation. For each patient, CT and PET scans and GTVp contours, used for radiotherapy treatment planning, were collected. We first trained a previously developed 2.5D DL framework for tumor probability prediction by 5-fold cross validation using 131 patients. Then, a 3D ResNet18 was trained for outcome prediction using the 3D TPM as one of the possible inputs. The endpoints were LC, RC, DMFS, and OS. We performed 3-fold cross validation on 168 patients for each endpoint using different combinations of image modalities as input. The final prediction in the test set (100) was obtained by averaging the predictions of the 3-fold models. The C-index was used to evaluate the discriminative performance of the models. RESULTS The models trained replacing the GTVp contours with the TPM achieved the highest C-indexes for LC (0.74) and RC (0.60) prediction. For OS, using the TPM or the GTVp as additional image modality resulted in comparable C-indexes (0.72 and 0.74). CONCLUSIONS Adding predicted TPMs instead of GTVp contours as an additional input channel for DL-based outcome prediction models improved model performance for LC and RC.
Collapse
Affiliation(s)
- Alessia De Biase
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands; Data Science Centre in Health (DASH), University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| | - Baoqiang Ma
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands.
| | - Jiapan Guo
- Computer Science and Artificial Intelligence, Bernoulli Institute for Mathematics, University of Groningen (RUG), Groningen, AK 9700, the Netherlands
| | - Lisanne V van Dijk
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| | - Peter M A van Ooijen
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands; Data Science Centre in Health (DASH), University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Centre Groningen (UMCG), RB, Groningen 9700, the Netherlands
| |
Collapse
|
6
|
Chen Z, Yu Y, Liu S, Du W, Hu L, Wang C, Li J, Liu J, Zhang W, Peng X. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Clin Oral Investig 2023; 28:39. [PMID: 38151672 DOI: 10.1007/s00784-023-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES In this study, we constructed and validated models based on deep learning and radiomics to facilitate preoperative diagnosis of cervical lymph node metastasis (LNM) using contrast-enhanced computed tomography (CECT). MATERIALS AND METHODS CECT scans of 100 patients with OSCC (217 metastatic and 1973 non-metastatic cervical lymph nodes: development set, 76 patients; internally independent test set, 24 patients) who received treatment at the Peking University School and Hospital of Stomatology between 2012 and 2016 were retrospectively collected. Clinical diagnoses and pathological findings were used to establish the gold standard for metastatic cervical LNs. A reader study with two clinicians was also performed to evaluate the lymph node status in the test set. The performance of the proposed models and the clinicians was evaluated and compared by measuring using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). RESULTS A fusion model combining deep learning with radiomics showed the best performance (ACC, 89.2%; SEN, 92.0%; SPE, 88.9%; and AUC, 0.950 [95% confidence interval: 0.908-0.993, P < 0.001]) in the test set. In comparison with the clinicians, the fusion model showed higher sensitivity (92.0 vs. 72.0% and 60.0%) but lower specificity (88.9 vs. 97.5% and 98.8%). CONCLUSION A fusion model combining radiomics and deep learning approaches outperformed other single-technique models and showed great potential to accurately predict cervical LNM in patients with OSCC. CLINICAL RELEVANCE The fusion model can complement the preoperative identification of LNM of OSCC performed by the clinicians.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yao Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Wen Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Leihao Hu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Congwei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jiaqi Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jianbo Liu
- Huafang Hanying Medical Technology Co., Ltd, No.19, West Bridge Road, Miyun District, Beijing, 101520, People's Republic of China
| | - Wenbo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Huynh BN, Groendahl AR, Tomic O, Liland KH, Knudtsen IS, Hoebers F, van Elmpt W, Malinen E, Dale E, Futsaether CM. Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics. Front Med (Lausanne) 2023; 10:1217037. [PMID: 37711738 PMCID: PMC10498924 DOI: 10.3389/fmed.2023.1217037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023] Open
Abstract
Background Radiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classification algorithm for prediction of a clinical endpoint. Deep learning radiomics allows for a simpler workflow where images can be used directly as input to a convolutional neural network (CNN) with or without a pre-defined ROI. Purpose The purpose of this study was to evaluate (i) conventional radiomics and (ii) deep learning radiomics for predicting overall survival (OS) and disease-free survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) using pre-treatment 18F-fluorodeoxuglucose positron emission tomography (FDG PET) and computed tomography (CT) images. Materials and methods FDG PET/CT images and clinical data of patients with HNSCC treated with radio(chemo)therapy at Oslo University Hospital (OUS; n = 139) and Maastricht University Medical Center (MAASTRO; n = 99) were collected retrospectively. OUS data was used for model training and initial evaluation. MAASTRO data was used for external testing to assess cross-institutional generalizability. Models trained on clinical and/or conventional radiomics features, with or without feature selection, were compared to CNNs trained on PET/CT images without or with the gross tumor volume (GTV) included. Model performance was measured using accuracy, area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), and the F1 score calculated for both classes separately. Results CNNs trained directly on images achieved the highest performance on external data for both endpoints. Adding both clinical and radiomics features to these image-based models increased performance further. Conventional radiomics including clinical data could achieve competitive performance. However, feature selection on clinical and radiomics data lead to overfitting and poor cross-institutional generalizability. CNNs without tumor and node contours achieved close to on-par performance with CNNs including contours. Conclusion High performance and cross-institutional generalizability can be achieved by combining clinical data, radiomics features and medical images together with deep learning models. However, deep learning models trained on images without contours can achieve competitive performance and could see potential use as an initial screening tool for high-risk patients.
Collapse
Affiliation(s)
- Bao Ngoc Huynh
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Oliver Tomic
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ingerid Skjei Knudtsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
8
|
Pei G, Wang D, Sun K, Yang Y, Tang W, Sun Y, Yin S, Liu Q, Wang S, Huang Y. Deep learning-enhanced radiomics for histologic classification and grade stratification of stage IA lung adenocarcinoma: a multicenter study. Front Oncol 2023; 13:1224455. [PMID: 37546407 PMCID: PMC10400286 DOI: 10.3389/fonc.2023.1224455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background Preoperative prediction models for histologic subtype and grade of stage IA lung adenocarcinoma (LUAD) according to the update of the WHO Classification of Tumors of the Lung in 2021 and the 2020 new grade system are yet to be explored. We aim to develop the noninvasive pathology and grade evaluation approach for patients with stage IA LUAD via CT-based radiomics approach and evaluate their performance in clinical practice. Methods Chest CT scans were retrospectively collected from patients who were diagnosed with stage IA LUAD and underwent complete resection at two hospitals. A deep learning segmentation algorithm was first applied to assist lesion delineation. Expansion strategies such as bounding-box annotations were further applied. Radiomics features were then extracted and selected followed by radiomics modeling based on four classic machine learning algorithms for histologic subtype classification and grade stratification. The area under the receiver operating characteristic curve (AUC) was used to evaluate model performance. Results The study included 294 and 145 patients with stage IA LUAD from two hospitals for radiomics analysis, respectively. For classification of four histological subtypes, multilayer perceptron (MLP) algorithm presented no annotation strategy preference and achieved the average AUC of 0.855, 0.922, and 0.720 on internal, independent, and external test sets with 1-pixel expansion annotation. Bounding-box annotation strategy also enabled MLP an acceptable and stable accuracy among test sets. Meanwhile, logistic regression was selected for grade stratification and achieved the average AUC of 0.928, 0.837, and 0.748 on internal, independent, and external test sets with optimal annotation strategies. Conclusions DL-enhanced radiomics models had great potential to predict the fine histological subtypes and grades of early-stage LUADs based on CT images, which might serve as a promising noninvasive approach for the diagnosis and management of early LUADs.
Collapse
Affiliation(s)
- Guotian Pei
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Dawei Wang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yingshun Yang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Wen Tang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Yanfeng Sun
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Siyuan Yin
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd., Beijing, China
| | - Qiang Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Shuai Wang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| |
Collapse
|
9
|
Fan L, Yang W, Tu W, Zhou X, Zou Q, Zhang H, Feng Y, Liu S. Thoracic Imaging in China: Yesterday, Today, and Tomorrow. J Thorac Imaging 2022; 37:366-373. [PMID: 35980382 PMCID: PMC9592175 DOI: 10.1097/rti.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thoracic imaging has been revolutionized through advances in technology and research around the world, and so has China. Thoracic imaging in China has progressed from anatomic observation to quantitative and functional evaluation, from using traditional approaches to using artificial intelligence. This article will review the past, present, and future of thoracic imaging in China, in an attempt to establish new accepted strategies moving forward.
Collapse
Affiliation(s)
- Li Fan
- Second Affiliated Hospital, Naval Medical University
| | - Wenjie Yang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Tu
- Second Affiliated Hospital, Naval Medical University
| | - Xiuxiu Zhou
- Second Affiliated Hospital, Naval Medical University
| | - Qin Zou
- Second Affiliated Hospital, Naval Medical University
| | - Hanxiao Zhang
- Second Affiliated Hospital, Naval Medical University
| | - Yan Feng
- Second Affiliated Hospital, Naval Medical University
| | - Shiyuan Liu
- Second Affiliated Hospital, Naval Medical University
| |
Collapse
|
10
|
Wang Y, Lombardo E, Avanzo M, Zschaek S, Weingärtner J, Holzgreve A, Albert NL, Marschner S, Fanetti G, Franchin G, Stancanello J, Walter F, Corradini S, Niyazi M, Lang J, Belka C, Riboldi M, Kurz C, Landry G. Deep learning based time-to-event analysis with PET, CT and joint PET/CT for head and neck cancer prognosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106948. [PMID: 35752119 DOI: 10.1016/j.cmpb.2022.106948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/02/2023]
Abstract
OBJECTIVES Recent studies have shown that deep learning based on pre-treatment positron emission tomography (PET) or computed tomography (CT) is promising for distant metastasis (DM) and overall survival (OS) prognosis in head and neck cancer (HNC). However, lesion segmentation is typically required, resulting in a predictive power susceptible to variations in primary and lymph node gross tumor volume (GTV) segmentation. This study aimed at achieving prognosis without GTV segmentation, and extending single modality prognosis to joint PET/CT to allow investigating the predictive performance of combined- compared to single-modality inputs. METHODS We employed a 3D-Resnet combined with a time-to-event outcome model to incorporate censoring information. We focused on the prognosis of DM and OS for HNC patients. For each clinical endpoint, five models with PET and/or CT images as input were compared: PET-GTV, PET-only, CT-GTV, CT-only, and PET/CT-GTV models, where -GTV indicates that the corresponding images were masked using the GTV contour. Publicly available delineated CT and PET scans from 4 different Canadian hospitals (293) and the MAASTRO clinic (74) were used for training by 3-fold cross-validation (CV). For independent testing, we used 110 patients from a collaborating institution. The predictive performance was evaluated via Harrell's Concordance Index (HCI) and Kaplan-Meier curves. RESULTS In a 5-year time-to-event analysis, all models could produce CV HCIs with median values around 0.8 for DM and 0.7 for OS. The best performance was obtained with the PET-only model, achieving a median testing HCI of 0.82 for DM and 0.69 for OS. Compared with the PET/CT-GTV model, the PET-only still had advantages of up to 0.07 in terms of testing HCI. The Kaplan-Meier curves and corresponding log-rank test results also demonstrated significant stratification capability of our models for the testing cohort. CONCLUSION Deep learning-based DM and OS time-to-event models showed predictive capability and could provide indications for personalized RT. The best predictive performance achieved by the PET-only model suggested GTV segmentation might be less relevant for PET-based prognosis.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Elia Lombardo
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michele Avanzo
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Medical Physics, Aviano, Italy
| | - Sebastian Zschaek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Radiation Oncology, Berlin, Germany
| | - Julian Weingärtner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Radiation Oncology, Berlin, Germany
| | - Adrien Holzgreve
- University Hospital, LMU Munich, Nuclear Medicine, Munich, Germany
| | | | - Sebastian Marschner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Giuseppe Fanetti
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Radiation Oncology, Aviano, Italy
| | - Giovanni Franchin
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Radiation Oncology, Aviano, Italy
| | - Joseph Stancanello
- ELEKTA SAS, Clinical Applications Development, Boulogne-Billancourt, France
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jinyi Lang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Hamdeh A, Househ M, Abd-alrazaq A, Muchori G, Al-saadi A, Alzubaidi M. Artificial Intelligence and the diagnosis of lung cancer in early stage: scoping review. (Preprint).. [DOI: 10.2196/preprints.38773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND
Lung cancer is considered to be the most fatal out of all diagnoseable cancers. This is, in part, due to the difficulty in detecting lung cancer at an early stage. Moreover, approximately one in five individuals who will develop lung cancer will pass away due to a misdiagnosis. Fortunately, Machine Learning (ML) and Deep Learning (DL) is considered to be a promising solution for detection of lung cancer through developments in radiology.
OBJECTIVE
The purpose of this paper is to is to review how AI can assist identifying and diagnosing of lung cancer in an early stage.
METHODS
PRISMA was utilized and were retrieved from 4 databases: Google Scholar, PubMed, EMBASE, and Institute of Electrical and Electronics Engineers (IEEE). In addition, two phases of screening were implemented in order to determine relevant literature. The first phase was reading the title and abstract, and the second stage was reading the full text. These two steps were independently conducted by three reviewers. Finally, the three authors use a narrative synthesis to present the data.
RESULTS
Overall, 543 potential studies were extracted from four databases. After screening, 26 articles that met the inclusion criteria were included in this scoping review. Several articles utilized privet data including patients’ data and other public sources. 15 articles used data from UCI repository dataset (58%). However, CT scan images was utilized on 9 studies (normal CT was mentioned in 5 articles (19%), two studies used CT scan with PET (7.7%), and two articles used FDG with CT (7.7%). While two articles used demographic data such as age, sex, and educational background (7.7%).
CONCLUSIONS
This scoping review illustrates recent studies that utilize AI models to diagnose lung cancer. The literature currently relies on private and public databases and compare models with physicians or other machine learning technology. Additional studies should be conducted to explore the efficacy of these technologies in clinical settings.
Collapse
|