1
|
Wang Z, Xu S, Bian B, Hu Z, Wu F, Zhao S, Wang X, Wang L, Ma T. Lentinan Alleviated PM2.5 Exposure-Induced Epithelial-Mesenchymal Transition in Pulmonary Epithelial Cells by Inhibiting the GARP/TGF-β/Smad Pathway. TOXICS 2025; 13:166. [PMID: 40137493 PMCID: PMC11946725 DOI: 10.3390/toxics13030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
PM2.5 (fine particulate matter) is an air pollutant widely present in urban and industrial areas, which has emerged as a significant threat to human health. Specifically, long-term exposure to PM2.5 could lead to various lung diseases, including pulmonary fibrosis and Chronic Obstructive Pulmonary Disease (COPD). The Glycoprotein A Repetitions Predominant (GARP) protein, a key receptor and regulator for TGF-β1, has recently emerged as a vital cytokine in PM2.5-induced pulmonary pathological changes. As a membrane glycoprotein, GARP binds to TGF-β, keeping it in an active state. Herein, PM2.5 treatment upregulated GARP and promoted Epithelial-Mesenchymal Transition (EMT) via TGF-β/SMAD signaling pathway activation. Conversely, lentinan (a shiitake mushroom-derived polysaccharide) effectively reversed the PM2.5-induced GARP upregulation, alleviating EMT. This study elucidates the role of GARP in PM2.5-induced EMT through the TGF-β/SMAD pathway in pulmonary epithelial cells and discusses the therapeutic potential of lentinan.
Collapse
Affiliation(s)
- Zhi Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Shiqing Xu
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Bohao Bian
- Hulunbuir Center for Disease Control and Prevention, Hulun Buir 021000, China;
| | - Zhida Hu
- Cangzhou People’s Hospital, Department of Hospital Infection Management, Cangzhou 061000, China;
| | - Feiyang Wu
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Siqi Zhao
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Xiaohui Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Li Wang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| | - Teng Ma
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China; (Z.W.); (S.X.); (F.W.); (S.Z.); (X.W.)
| |
Collapse
|
2
|
Wang X, Wang S, Luo X. Clinical Study on the Induction of Psoriasis Flare-Ups by PM2.5 Air Pollutants via Immune Barrier Dysfunction. J Cutan Med Surg 2025; 29:18-23. [PMID: 39506319 DOI: 10.1177/12034754241287555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVE This study explores the clinical correlation between the air pollutant PM2.5 and the induction of psoriasis flare-ups through the disruption of the immune barrier. METHODS Air quality data, the average mass concentration of the primary atmospheric pollutant PM2.5, and meteorological data spanning from November 2023 to March 2024 were gathered from 9 air quality monitoring stations situated within our city, courtesy of the local Meteorological Information Center. Psoriasis cases were sourced from our hospital's dermatology department, encompassing patients diagnosed and treated from November 2023 to March 2024 and residing within the city. RESULTS From January 2023 to May 2024, aberrant expression of Th1 cells and Th2 cells was observed in psoriasis flare-up patients. Spearman correlation coefficient analysis revealed a positive correlation between PM2.5, PM10, and Th1 cells, and a negative correlation with Th2 cells, exhibiting significant differences (P < .05). Supplemental Figure 1 illustrates an increase in psoriasis flare-ups on the fifth day following a unit increase in PM2.5 concentration, with an excess risk (ER) value of 0.046 [95% confidence interval (CI): 0.137-0.893]. Conversely, after an increase of 1 unit of PM10, there was a decrease on the third and fourth days, followed by increases on the fifth, sixth, and seventh days, with ER values of 0.038 (95% CI: 0.013-0.067), 0.045 (95% CI: 0.019-0.073), 0.051 (95% CI: 0.034-0.078), 0.057 (95% CI: 0.045-0.083), and 0.061 (95% CI: 0.051-0.087), respectively. CONCLUSION Air pollutant PM2.5 could potentially exacerbate psoriasis flare-ups by compromising the immune barrier, suggesting a plausible mechanism linked to the onset of this condition.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuixia Wang
- Department of Dermatology, Affiliated Hospital of Army Military Medical University Officer School, Shijiazhuang, China
| | - Xuejiao Luo
- Department of Dermatology, Affiliated Hospital of Army Military Medical University Officer School, Shijiazhuang, China
| |
Collapse
|
3
|
Kurasz A, Lip GYH, Dobrzycki S, Kuźma Ł. A Breath of Trouble: Unraveling the Impact of Air Pollution on Atrial Fibrillation. J Clin Med 2024; 13:7400. [PMID: 39685856 DOI: 10.3390/jcm13237400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Air pollution is a pervasive global challenge with profound implications for public health. This review explores the intricate relationship between air pollution and atrial fibrillation (AF), a prevalent cardiac arrhythmia associated with significant morbidity and mortality. Drawing on a comprehensive analysis of the existing literature, this review synthesizes current evidence linking various air pollutants, including particulate matter, nitrogen dioxide, ozone, and carbon monoxide, to the development and exacerbation of AF. The review delves into the role of air pollution as a global health issue alongside its specific sources, such as traffic-related emissions and industrial pollutants. It also examines the underlying mechanisms through which air pollution may contribute to the pathogenesis of AF, encompassing oxidative stress, inflammation, and autonomic nervous system dysregulation. In addition, it explores the impact of individual pollutants and the results of meta-analyses. It considers the results of vulnerable populations, including sex differences between the individuals and those with pre-existing cardiovascular conditions, who may be disproportionately affected. We also address critical research gaps in this area. Overall, air pollution has been increasingly recognized as a significant trigger for AF, with evidence linking exposure to particulate matter and gaseous pollutants to an increased incidence in short- as well as long-term exposure, highlighting the need for targeted public health interventions and further research to mitigate its cardiovascular impact.
Collapse
Affiliation(s)
- Anna Kurasz
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Gregory Y H Lip
- Department of Cardiology, Lipidology and Internal Medicine, Medical University of Bialystok, 15-540 Bialystok, Poland
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool L3 3AF, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| |
Collapse
|
4
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Qian Y, Shi Q, Zhou W, He B, Xu H, Liu B, Miao W, Bellusci S, Chen C, Dong N. FGF10 protects against particulate matter-induced lung injury by inhibiting ferroptosis via Nrf2-dependent signaling. Int Immunopharmacol 2024; 134:112165. [PMID: 38692017 DOI: 10.1016/j.intimp.2024.112165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.
Collapse
Affiliation(s)
- Yao Qian
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qiangqiang Shi
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China.
| | - Wanting Zhou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Baiqi He
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Haibo Xu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Bin Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wanqi Miao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China; Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany.
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Sun L, Yue H, Fang H, Li R, Li S, Wang J, Tu P, Meng F, Yan W, Zhang J, Bignami E, Jeon K, Kidane B, Zhang P. The role and mechanism of PDZ binding kinase in hypobaric and hypoxic acute lung injury. J Thorac Dis 2024; 16:2082-2101. [PMID: 38617778 PMCID: PMC11009593 DOI: 10.21037/jtd-24-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Background Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.
Collapse
Affiliation(s)
- Linao Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Yue
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Fang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shicong Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianyao Wang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengjie Tu
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Meng
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Yan
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxia Zhang
- Xianrenchang (Tianjin) Medical Technology Co., Ltd., Tianjin, China
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Biniam Kidane
- Section of Thoracic Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Mariscal-Aguilar P, Gómez-Carrera L, Bonilla G, Díaz-Almirón M, Gayá F, Carpio C, Zamarrón E, Fernández-Velilla M, Torres I, Esteban I, Regojo R, Villamañán E, Prados C, Álvarez-Sala R. Air pollution exposure and its effects on idiopathic pulmonary fibrosis: clinical worsening, lung function decline, and radiological deterioration. Front Public Health 2024; 11:1331134. [PMID: 38269380 PMCID: PMC10806203 DOI: 10.3389/fpubh.2023.1331134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Major urban pollutants have a considerable influence on the natural history of lung disease. However, this effect is not well known in idiopathic pulmonary fibrosis (IPF). Aim This study aimed to investigate the effects of air pollution on clinical worsening, lung function, and radiological deterioration in patients with IPF. Methods This exploratory retrospective cohort study included 69 patients with IPF, monitored from 2011 to 2020. Data on air pollution levels, including carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter ≤ 2.5 μM (PM2.5), ozone (O3), and nitrogen oxides (NOx), were collected from the nearest air quality monitoring stations (<3.5 km from the patients' homes). Patient outcomes such as clinical worsening, lung function decline, and radiological deterioration were assessed over various exposure periods (1, 3, 6, 12, and 36 months). The statistical analyses were adjusted for various factors, including age, sex, smoking status, and treatment. Results There was an association between higher O3 levels and an increased likelihood of clinical worsening over 6 and 36 months of exposure (odds ratio [OR] and 95% confidence interval [CI] = 1.16 [1.01-1.33] and OR and 95% CI = 1.80 [1.07-3.01], respectively). Increased CO levels were linked to lung function decline over 12-month exposure periods (OR and 95% CI 1.63 = [1.01-2.63]). Lastly, radiological deterioration was significantly associated with higher CO, NO2, and NOx levels over 6-month exposure periods (OR and 95% CI = 2.14 [1.33-3.44], OR and 95% CI = 1.76 [1.15-2.66] and OR and 95% CI = 1.16 [1.03-1.3], respectively). Conclusion This study suggests that air pollution, specifically O3, CO, NO2, and NOx, could affect clinical worsening, lung function, and radiological outcomes in patients with IPF. These findings highlight the potential role of air pollution in the progression of IPF, emphasizing the need for further research and air quality control measures to mitigate its effects on respiratory health.
Collapse
Affiliation(s)
- Pablo Mariscal-Aguilar
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Luis Gómez-Carrera
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Universidad Autónoma de Madrid, Department of Medicine, Madrid, Spain
| | - Gema Bonilla
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | - Mariana Díaz-Almirón
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Francisco Gayá
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Carlos Carpio
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Universidad Autónoma de Madrid, Department of Medicine, Madrid, Spain
| | - Ester Zamarrón
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María Fernández-Velilla
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Torres
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Esteban
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Pathology, Hospital Universitario La Paz, Madrid, Spain
| | - Rita Regojo
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Pathology, Hospital Universitario La Paz, Madrid, Spain
| | - Elena Villamañán
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Pharmacy, Hospital Universitario La Paz, Madrid, Spain
| | - Concepción Prados
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Universidad Autónoma de Madrid, Department of Medicine, Madrid, Spain
| | - Rodolfo Álvarez-Sala
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Universidad Autónoma de Madrid, Department of Medicine, Madrid, Spain
| |
Collapse
|