1
|
Barbeta E, Arrieta M, Motos A, Bobi J, Yang H, Yang M, Tanzella G, Di Ginnatale P, Nogas S, Vargas CR, Cabrera R, Battaglini D, Meli A, Kiarostami K, Vázquez N, Fernández-Barat L, Rigol M, Mellado-Artigas R, Frigola G, Camprubí-Rimblas M, Ferrer P, Martinez D, Artigas A, Ferrando C, Ferrer M, Torres A. A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury. Crit Care 2023; 27:239. [PMID: 37328874 PMCID: PMC10276390 DOI: 10.1186/s13054-023-04512-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.
Collapse
Affiliation(s)
- Enric Barbeta
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Marta Arrieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Ana Motos
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
| | - Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015, Rotterdam, The Netherlands
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Hua Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Minlan Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Giacomo Tanzella
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Pierluigi Di Ginnatale
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Stefano Nogas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Carmen Rosa Vargas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Roberto Cabrera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Denise Battaglini
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Andrea Meli
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kasra Kiarostami
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Nil Vázquez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Ricard Mellado-Artigas
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Frigola
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marta Camprubí-Rimblas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Pau Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Martinez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Antonio Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carlos Ferrando
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Miquel Ferrer
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain
| | - Antoni Torres
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain.
| |
Collapse
|
2
|
He D, Wang S, Fang G, Zhu Q, Wu J, Li J, Shi D, Lian X. LXRs/ABCA1 activation contribute to the anti-inflammatory role of phytosterols on LPS-induced acute lung injury. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
3
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
4
|
Monjezi M, Jamaati H, Noorbakhsh F. Attenuation of ventilator-induced lung injury through suppressing the pro-inflammatory signaling pathways: A review on preclinical studies. Mol Immunol 2021; 135:127-136. [PMID: 33895577 DOI: 10.1016/j.molimm.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Mechanical ventilation (MV) is a relatively common medical intervention in ICU patients. The main side effect of MV is the so-called "ventilator-induced lung injury" (VILI). The pathogenesis of VILI is not completely understood; however, it has been reported that MV might be associated with up-regulation of various inflammatory mediators within the lung tissue and that these mediators might act as pathogenic factors in lung tissue injury. One potential mechanism for the generation of inflammatory mediators is through the release of endogenous molecules known as damage associated molecular patterns (DAMPs). These molecules are released from injured tissues and can bind to pattern recognition receptors (PRRs). PRR activation generally leads to the production and release of inflammation-related molecules including innate immune cytokines and chemokines. It has been suggested that blocking DAMP/PRR signaling pathways might diminish the progression of VILI. Herein, we review the latest findings with regard to the effects of DAMP/PRRs and their blockade, as well as the potential therapeutic targets and future research directions in VILI. Results of studies performed on human samples, animal models of disease, as well as relevant in vitro systems will be discussed.
Collapse
Affiliation(s)
- Mojdeh Monjezi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhu CH, Yu J, Wang BQ, Nie Y, Wang L, Shan SQ. Dexmedetomidine reduces ventilator-induced lung injury via ERK1/2 pathway activation. Mol Med Rep 2020; 22:5378-5384. [PMID: 33173983 PMCID: PMC7647005 DOI: 10.3892/mmr.2020.11612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) can contribute to ventilator-induced lung injury (VILI); dexmedetomidine (Dex) treatment attenuates MV-related pulmonary inflammation, but the mechanisms remain unclear. Therefore, the present study aimed to explore the protective effect and the possible molecular mechanisms of Dex in a VILI rodent model. Adult male Sprague-Dawley rats were randomly assigned to one of seven groups (n=24 rats/group). Rats were euthanized after 4 h of continuous MV, and pathological changes, lung wet/dry (W/D) weight ratio, the levels of inflammatory cytokines (IL-1β, TNF-α and IL-6) in the bronchoalveolar lavage fluid (BALF), and the expression levels of Bcl-2 homologous antagonist/killer (Bak), Bcl-2, pro-caspase-3, cleaved caspase-3 and the phosphorylation of ERK1/2 in the lung tissues were measured. Propidium iodide uptake and TUNEL staining were used to detect epithelial cell death. The Dex pretreatment group exhibited fewer pathological changes, lower W/D ratios and lower expression levels of inflammatory cytokines in BALF compared with the VILI group. Dex significantly attenuated the ratio of Bak/Bcl-2, cleaved caspase-3 expression levels and epithelial cell death, and increased the expression of phosphorylated ERK1/2. The protective effects of Dex could be partially reversed by PD98059, which is a mitogen-activated protein kinase (upstream of ERK1/2) inhibitor. Overall, dexmedetomidine was found to reduce the inflammatory response and epithelial cell death caused by VILI, via the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Chun-Hua Zhu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jian Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ben-Qing Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yu Nie
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Lei Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shi-Qiang Shan
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
6
|
Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev 2020; 53:33-37. [PMID: 32389499 PMCID: PMC7252014 DOI: 10.1016/j.cytogfr.2020.04.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
7
|
Zhang S, Dai H, Zhu L, Lin F, Hu Z, Jing R, Zhang W, Zhao C, Hong X, Zhong JH, Pan L. Microvesicles packaging IL-1β and TNF-α enhance lung inflammatory response to mechanical ventilation in part by induction of cofilin signaling. Int Immunopharmacol 2018; 63:74-83. [PMID: 30075431 DOI: 10.1016/j.intimp.2018.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
Microvesicles shed from pulmonary cells are capable of transferring inflammatory cargo to recipient cells nearby or in distant to enhance inflammation. Some authors believe that cofilin controls actin dynamics and regulates vesicle mobilization. We therefore investigated the potential role and mechanism of microvesicles in ventilator-induced lung injury (VILI). Fifty male C57BL/6 mice were orotracheally intubated and either allowed to breathe spontaneously or they were mechanically ventilated with different tidal volumes (Vt) and ventilation times. Lung tissue injury was assessed in terms of lung histopathologic examination, wet/dry weight ratios, and levels of total proteins and of cytokines. Microvesicle characteristics, sizes, contents and levels as well as cofilin were also measured. We found that lung inflammation increased significantly after ventilation with high Vt for 4 h; these conditions led to secretion of larger and more microvesicles into the alveoli than animals with/without ventilation at low Vt. Intratracheal instillation of microvesicles obtained from animals ventilated with low or high Vt triggered significant lung inflammation in naive mice, and these high-Vt microvesicles not only carried more IL-1β and TNF-α but also induced more severe lung inflammation compared to low-Vt microvesicles; And high-Vt microvesicles at 2 h carried more molecular cargo than that at 1 h or 4 h, which may involve the shift and amplification of inflammation. Furthermore, blocking the phosphorylation of cofilin can not only inhibit microvesicle formation in the lung, but also reduce lung injury. Collectively, our data suggest that microvesicles packaging IL-1β and TNF-α enhance lung inflammation in VILI.
Collapse
Affiliation(s)
- Suisui Zhang
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Huijun Dai
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lingyu Zhu
- Department of Breast Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Lin
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhaokun Hu
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Ren Jing
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Weikang Zhang
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chen Zhao
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xueqi Hong
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China
| | - Linghui Pan
- Department of Anesthesiology, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Chen H, Sun X, Yang X, Hou Y, Yu X, Wang Y, Wu J, Liu D, Wang H, Yu J, Yi W. Dexmedetomidine reduces ventilator-induced lung injury (VILI) by inhibiting Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway. Bosn J Basic Med Sci 2018; 18:162-169. [PMID: 29510084 DOI: 10.17305/bjbms.2018.2400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation (MV) may lead to ventilator-induced lung injury (VILI). Previous research has shown that dexmedetomidine attenuates pulmonary inflammation caused by MV, but the underlying mechanisms remain unclear. Our study aims to test whether dexmedetomidine has a protective effect against VILI and to explore the possible molecular mechanisms using the rat model. Thirty adult male Wistar rats weighing 200-250 g were randomly assigned to 5 groups (n = 6): control, low tidal volume MV (LMV), high tidal volume (HVT) MV (HMV), HVT MV + dexmedetomidine (DEX), HVT MV + dexmedetomidine + yohimbine (DEX+Y). Rats were euthanized after being ventilated for 4 hours. Pathological changes, lung wet/dry (W/D) weight ratio, lung myeloperoxidase (MPO) activity, levels of inflammatory cytokines (i.e., interleukin [IL]-1β, tumor necrosis factor alpha [TNF-α], and IL-6) in the bronchoalveolar lavage fluid (BALF) and lung tissues, expression of Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB, and activation of NF-κB in lung tissues were measured. Compared with HMV, DEX group showed fewer pathological changes, lower W/D ratios and decreased MPO activity of the lung tissues and lower concentrations of the inflammatory cytokines in the BALF and lung tissues. Dexmedetomidine significantly inhibited the expression of TLR4 and NF-κB and activation of NF-κB. Yohimbine partly alleviated the effects of dexmedetomidine. Dexmedetomidine reduced the inflammatory response to HVT-MV and had a protective effect against VILI, with the inhibition of the TLR4/NF-κB signaling pathway, at least partly via α2-adrenoceptors.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|