1
|
Rixecker TM, Ast V, Rodriguez E, Mazuru V, Wagenpfeil G, Mang S, Muellenbach RM, Nobile L, Ajouri J, Bals R, Seiler F, Taccone FS, Lepper PM. Carbon Dioxide Targets in Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. ASAIO J 2024; 70:1094-1101. [PMID: 38905594 DOI: 10.1097/mat.0000000000002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Target values for arterial carbon dioxide tension (PaCO 2 ) in extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) are unknown. We hypothesized that lower PaCO 2 values on ECMO would be associated with lighter sedation. We used data from two independent patient cohorts with ARDS spending 1,177 days (discovery cohort, 69 patients) and 516 days (validation cohort, 70 patients) on ECMO and evaluated the associations between daily PaCO 2 , pH, and bicarbonate (HCO 3 ) with sedation. Median PaCO 2 was 41 (interquartile range [IQR] = 37-46) mm Hg and 41 (IQR = 37-45) mm Hg in the discovery and the validation cohort, respectively. Lower PaCO 2 and higher pH but not bicarbonate (HCO 3 ) served as significant predictors for reaching a Richmond Agitation Sedation Scale (RASS) target range of -2 to +1 (lightly sedated to restless). After multivariable adjustment for mortality, tracheostomy, prone positioning, vasoactive inotropic score, Simplified Acute Physiology Score (SAPS) II or Sequential Organ Failure Assessment (SOFA) Score and day on ECMO, only PaCO 2 remained significantly associated with the RASS target range (adjusted odds ratio 1.1 [95% confidence interval (CI) = 1.01-1.21], p = 0.032 and 1.29 [95% CI = 1.1-1.51], p = 0.001 per mm Hg decrease in PaCO 2 for the discovery and the validation cohort, respectively). A PaCO 2 ≤40 mm Hg, as determined by the concordance probability method, was associated with a significantly increased probability of a sedation level within the RASS target range in both patient cohorts (adjusted odds ratio = 2.92 [95% CI = 1.17-7.24], p = 0.021 and 6.82 [95% CI = 1.50-31.0], p = 0.013 for the discovery and the validation cohort, respectively).
Collapse
Affiliation(s)
- Torben M Rixecker
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Vanessa Ast
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Elianna Rodriguez
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vitalie Mazuru
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Gudrun Wagenpfeil
- Department of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Sebastian Mang
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Ralf M Muellenbach
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Leda Nobile
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonas Ajouri
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Robert Bals
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Frederik Seiler
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philipp M Lepper
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| |
Collapse
|
2
|
Müller MC, Wilke SK, Dobbermann A, Kirsten S, Ruß M, Weber-Carstens S, Wollersheim T. Dissolved Oxygen Relevantly Contributes to Systemic Oxygenation During Venovenous Extracorporeal Membrane Oxygenation Support. ASAIO J 2024; 70:667-674. [PMID: 38446867 PMCID: PMC11280439 DOI: 10.1097/mat.0000000000002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
When determining extracorporeal oxygen transfer (V ML O 2 ) during venovenous extracorporeal membrane oxygenation (VV ECMO) dissolved oxygen is often considered to play a subordinate role due to its poor solubility in blood plasma. This study was designed to assess the impact of dissolved oxygen on systemic oxygenation in patients with acute respiratory distress syndrome (ARDS) on VV ECMO support by differentiating between dissolved and hemoglobin-bound extracorporeal oxygen transfer. We calculated both extracorporeal oxygen transfer based on blood gas analysis using the measuring energy expenditure in extracorporeal lung support patients (MEEP) protocol and measured oxygen uptake by the native lung with indirect calorimetry. Over 20% of V ML O 2 and over 10% of overall oxygen uptake (VO 2 total ) were realized as dissolved oxygen. The transfer of dissolved oxygen mainly depended on ECMO blood flow (BF ML ). In patients with severely impaired lung function dissolved oxygen accounted for up to 28% of VO 2 total . A clinically relevant amount of oxygen is transferred as physically dissolved fraction, which therefore needs to be considered when determining membrane lung function, manage ECMO settings or guiding the weaning procedure.
Collapse
Affiliation(s)
- Michael C. Müller
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah K. Wilke
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andrej Dobbermann
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Kirsten
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Ruß
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Weber-Carstens
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Wollersheim
- From the Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Charbit J, Courvalin E, Dagod G, Laumon T, Hammani S, Molinari N, Capdevila X. PCO 2 Gradient Between Inlet and Outlet Blood of Extracorporeal Respiratory Support Is a Reliable Marker of CO 2 Elimination. ASAIO J 2024; 70:417-426. [PMID: 38127592 DOI: 10.1097/mat.0000000000002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Our objective was to assess the relationship between the pre-/post-oxygenator gradient of the partial pressure of carbon dioxide (∆ EC PCO 2 ; dissolved form) and CO 2 elimination under extracorporeal respiratory support. All patients who were treated with veno-venous extracorporeal membrane oxygenation and high-flow extracorporeal CO 2 removal in our intensive care unit over 18 months were included. Pre-/post-oxygenator blood gases were collected every 12 h and CO 2 elimination was calculated for each pair of samples (pre-/post-oxygenator total carbon dioxide content in blood [ ct CO 2 ] × pump flow [extracorporeal pump flow {Q EC }]). The relationship between ∆ EC PCO 2 and CO 2 elimination, as well as the origin of CO 2 removed. Eighteen patients were analyzed (24 oxygenators and 293 datasets). Each additional unit of ∆ EC PCO 2 × Q EC was associated with an increase in CO 2 elimination of 5.2 ml (95% confidence interval [CI], 4.7-5.6 ml; p < 0.001). Each reduction of 1 ml STPD/dl of CO 2 across the oxygenator was associated with a reduction of 0.63 ml STPD/dl (95% CI, 0.60-0.66) of CO 2 combined with water, 0.08 ml STPD/dl (95% CI, 0.07-0.09) of dissolved CO 2 , and 0.29 ml STPD/dl (95% CI, 0.27-0.31) of CO 2 in erythrocytes. The pre-/post-oxygenator PCO 2 gradient under extracorporeal respiratory support is thus linearly associated with CO 2 elimination; however, most of the CO 2 removed comes from combined CO 2 in plasma, generating bicarbonate.
Collapse
Affiliation(s)
- Jonathan Charbit
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
- institut Desbrest d'épidémiologie et de santé publique, institut national de la santé et de la recherche médicale, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Elie Courvalin
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
| | - Geoffrey Dagod
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
| | - Thomas Laumon
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
| | - Samy Hammani
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
| | - Nicolas Molinari
- institut Desbrest d'épidémiologie et de santé publique, institut national de la santé et de la recherche médicale, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Xavier Capdevila
- From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
4
|
Butt SP, Razzaq N, Saleem Y, Cook B, Abdulaziz S. Improving ECMO therapy: Monitoring oxygenator functionality and identifying key indicators, factors, and considerations for changeout. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2024; 56:20-29. [PMID: 38488715 PMCID: PMC10941833 DOI: 10.1051/ject/2023047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/09/2023] [Indexed: 03/17/2024]
Abstract
INTRODUCTION The optimal timing for extracorporeal membrane oxygenation (ECMO) circuit change-out is crucial for the successful management of patients with severe cardiopulmonary failure. This comprehensive review examines the various factors that influence the timing of oxygenator replacement in the ECMO circuit. By considering these factors, clinicians can make informed decisions to ensure timely and effective change-out, enhancing patient outcomes and optimizing the delivery of ECMO therapy. METHODOLOGY A thorough search of relevant studies on ECMO circuits and oxygenator change-out was conducted using multiple scholarly databases and relevant keywords. Studies published between 2017 and 2023 were included, resulting in 40 studies that met the inclusion criteria. DISCUSSION Thrombosis within the membrane oxygenator and its impact on dysfunction were identified as significant contributors, highlighting the importance of monitoring coagulation parameters and gas exchange. Several factors, including fibrinogen levels, pre and post-membrane blood gases, plasma-free hemoglobin, D-dimers, platelet function, flows and pressures, and anticoagulation strategy, were found to be important considerations when determining the need for an oxygenator or circuit change-out. The involvement of a multidisciplinary team and thorough preparation were also highlighted as crucial aspects of this process. CONCLUSION In conclusion, managing circuit change-outs in ECMO therapy requires considering factors such as fibrinogen levels, blood gases, plasma-free hemoglobin, D-dimers, platelet function, flows, pressures, and anticoagulation strategy. Monitoring these parameters allows for early detection of issues, timely interventions, and optimized ECMO therapy. Standardized protocols, personalized anticoagulation approaches, and non-invasive monitoring techniques can improve the safety and effectiveness of circuit change-outs. Further research and collaboration are needed to advance ECMO management and enhance patient outcomes.
Collapse
Affiliation(s)
- Salman Pervaiz Butt
-
Perfusionist & ECMO Specialist, Heart Vascular and Thoracic Institute, Cleveland Clinic PO BOX: 112412 Abu Dhabi United Arab Emirates
| | - Nabeel Razzaq
-
Perfusion Department, Cleveland Clinic PO BOX: 112412 Abu Dhabi United Arab Emirates
| | - Yasir Saleem
-
Clinical Perfusionist, Department of CTVS, All India Institute of Medical Science Rishikesh
| | - Bill Cook
-
Clinical Perfusionist, Perfusion Department, Glenfield Hospital Leicester UK
| | - Salman Abdulaziz
-
Consultant of Cardiovascular Critical Care, Co-Chair of ECMO Task Force, Department of Health United Arab Emirates
| |
Collapse
|
5
|
Wu HL, Zhou SJ, Chen XH, Cao H, Zheng YR, Chen Q. Lung ultrasound score for monitoring the withdrawal of extracorporeal membrane oxygenation on neonatal acute respiratory distress syndrome. Heart Lung 2024; 63:9-12. [PMID: 37717371 DOI: 10.1016/j.hrtlng.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is considered an efficient and life-saving treatment for neonatal severe acute respiratory distress syndrome (ARDS). Bedside lung ultrasound (LUS) is an attractive and feasible method for evaluating neonatal ARDS. OBJECTIVE To evaluate the value of LUS score at veno-arterial (V-A) ECMO withdrawal in neonatal patients with severe acute ARDS. METHODS A retrospective preliminary study was conducted in our cardiac intensive care unit from June 2021 to June 2022. Eight severe ARDS neonates who received V-A ECMO were enroled in this study. LUS was measured daily during ECMO and when weaning off ECMO. The relationships between the LUS score and ECMO parameters (blood flow and the sweep gas of FiO2) were assessed. RESULTS (1) There was a significant improvement in LUS score by ECMO treatment. And, various diagnostic signs of lung ultrasound were detected during ECMO, including pulmonary edema (7 neonates) and lung consolidation (4 neonates), followed by pleural effusion (1 neonate) and bilateral white lung (1 neonate). (2) A total of 12 trials for weaning off ECMO were carried out, of which four failed, but all eight neonates finally succeeded in passing the weaning trial. LUS score of 21 or less was defined as a cut-off value for predicting ECMO weaning success. During ECMO treatment, LUS score was positively correlated with ECMO blood flow (r = 0.866, P < 0.05). CONCLUSIONS LUS can be used to evaluate the various lung diagnostic signs in ARDS neonatal patients during ECMO treatment, and the LUS score under ECMO treatment decreases over time. The reduction in LUS score is associated with lower ECMO blood flow. LUS score is regarded as a predictor of ECMO weaning success.
Collapse
Affiliation(s)
- Hong-Lin Wu
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Si-Jia Zhou
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiu-Hua Chen
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yi-Rong Zheng
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Collins PD, Giosa L, Camporota L, Barrett NA. State of the art: Monitoring of the respiratory system during veno-venous extracorporeal membrane oxygenation. Perfusion 2024; 39:7-30. [PMID: 38131204 DOI: 10.1177/02676591231210461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Monitoring the patient receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is challenging due to the complex physiological interplay between native and membrane lung. Understanding these interactions is essential to understand the utility and limitations of different approaches to respiratory monitoring during ECMO. We present a summary of the underlying physiology of native and membrane lung gas exchange and describe different tools for titrating and monitoring gas exchange during ECMO. However, the most important role of VV ECMO in severe respiratory failure is as a means of avoiding further ergotrauma. Although optimal respiratory management during ECMO has not been defined, over the last decade there have been advances in multimodal respiratory assessment which have the potential to guide care. We describe a combination of imaging, ventilator-derived or invasive lung mechanic assessments as a means to individualise management during ECMO.
Collapse
Affiliation(s)
- Patrick Duncan Collins
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Nicholas A Barrett
- Department of Critical Care Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
7
|
Costantini S, Belliato M, Ferrari F, Gazzaniga G, Ravasi M, Manera M, De Piero ME, Curcelli A, Cardinale A, Lorusso R. A retrospective analysis of the hemolysis occurrence during extracorporeal membrane oxygenation in a single center. Perfusion 2023; 38:609-621. [PMID: 35225087 DOI: 10.1177/02676591211073768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Extracorporeal membrane oxygenation (ECMO)-associated hemolysis still represents a serious complication. The present study aimed to investigate those predictive factors, such as flow rates, the use of anticoagulants, and circuit connected dialysis, that might play a pivotal role in hemolysis in adult patients. METHODS This is a retrospective single-center case series of 35 consecutive adult patients undergoing veno-venous ECMO support at our center between April 2014 and February 2020. Daily plasma-free hemoglobin (pfHb) and haptoglobin (Hpt) levels were chosen as hemolysis markers and they were analyzed along with patients' characteristics, daily laboratory findings, and corresponding ECMO system variables, as well as continuous renal replacement therapy (CRRT) when administered, looking for factors influencing their trends over time. RESULTS Among the many settings related to the ECMO support, the presence of CRRT connected to the ECMO circuit has been found associated with both higher daily pfHb levels and lower Hpt levels. After correction for potential confounders, hemolysis was ascribable to circuit-related variables, in particular the membrane oxygenation dead space was associated with an Hpt reduction (B = -215.307, p = 0.004). Moreover, a reduction of ECMO blood flow by 1 L/min has been associated with a daily Hpt consumption of 93.371 mg/dL (p = 0.001). CONCLUSIONS Technical-induced hemolysis during ECMO should be monitored not only when suspected but also during quotidian management and check-ups. While considering the clinical complexity of patients on ECMO support, clinicians should not only be aware of and anticipate possible circuitry malfunctions or inadequate flow settings, but they should also take into account the effects of an ECMO circuit-connected CRRT, as an equally important key factor triggering hemolysis.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Mirko Belliato
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Fiorenza Ferrari
- UOC Anestesia e Rianimazione I, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Gazzaniga
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Marta Ravasi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Miriam Manera
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Antonio Curcelli
- Cardiac Anesthesia and Intensive Care ICLAS Rapallo, 18591GVM Care & Res, Rapallo, Italy
| | - Alessandra Cardinale
- Department of Statistical Sciences, 9311Sapienza University of Rome, Rome, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,118066Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherland
| |
Collapse
|
8
|
Condello I, Lorusso R, Nasso G, Speziale G. Long-term ECMO, efficiency and performance of EUROSETS adult A.L.ONE ECMO oxygenator. J Cardiothorac Surg 2023; 18:95. [PMID: 36998079 PMCID: PMC10061787 DOI: 10.1186/s13019-023-02190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The management of the oxygenator can be prolonged in the long-term procedures especially during extracorporeal membrane oxygenation (ECMO) for bridge to transplant or bridge to recovery. Long-term use often involves an overrun of the time of use with respect to certification of the oxygenating module of 14 days, for the maintenance of performance and efficiency of the oxygenator. The evaluation of the long-term oxygenator efficiency is complex and depends on the: patient pathology, ECMO configuration, the management of coagulation and anticoagulation, materials selection and circuit components, the structure, design and performance of the oxygenator. In this context we investgated the long-term performance of the A.L.ONE Eurosets ECMO oxygenator in relation to the parameters prodromal to replacement. METHODS We retrospectively collected eight years data from Anthea Hospital GVM Care & Research, Bari, Italy on the long-term use exceeding 14 days of Eurosets A.L.ONE ECMO Adult oxygenator in Polymetylpentene fiber, for ECMO procedures, including the procedures: Veno Arterial (VA) ECMO post-cardiotomy or not, veno-venous (VV) ECMO. The primary end points were the evaluation of Gas Transfer: oxygen partial pressure (PO2) post oxygenator, Carbon dioxide partial pressure (PCO2) post oxygenator, the oxygen transfer across the oxygenator membrane V'O2, differential CO2 content across oxygenator; Pressure monitoring: oxygenator pressure Drop in relation to Blood flow rate (BFR) (ΔP); Hematologic values: Hemoglobin, Fibrinogen, Platelets, aPTT, D-Dimer, LDH. RESULTS Nine VA ECMO patients who used the oxygenator for 18.5 days and two VV ECMO patients who used the oxygenators for 17.2 days on the seventeenth days reported average values PaO2 (267 ± 29 mmHg); PaCO2 (34 ± 4 mmHg) with gas blender values set to 3.8 ± 0.6 L/min of air and a FiO2 of 78 ± 5%; the transfer across the oxygenator membrane V'O2 was 189 ± 43 (ml/min/m2). The mean peak of partial pressure of carbon dioxide from the gas exhaust of oxygenator (PECO2) was 38 ± 4 mmHg; differential CO2 across the oxygenator "pre-oxygenator PCO2-post-oxygenator PCO2" (18 ± 6 mmHg); the mean blood flow rate (BFR) 4.5 ± 0.6 (L/minute); the pump revolution per minutes mean maximum rate was 4254 ± 345 (RPM); the mean pressure drop (ΔP) was 76 ± 12 mmHg; the mean peak of d-dimers (DDs) was 23.6 ± 0.8 mg / dL; the mean peak of LDH was 230 ± 55 (mg/dl); fibrinogen mean peak 223 ± 40 (mg/dl). CONCLUSIONS The performance of the Eurosets A.L.ONE ECMO Adult polymethylpentene fiber oxygenator in our experience has proven efficiency in terms of O2 uptake and CO2 removal, blood fluid dynamics, metabolic compensation and heat exchange in the long-term treatment. The device was safe without iatrogenic problems over a period of 14 days in the patients undergoing ECMO VA and in all patients undergoing VV ECMO with continuous administration of anticoagulation therapy.
Collapse
Affiliation(s)
- Ignazio Condello
- Department of Cardiac Surgery, Anthea Hospital, GVM Care & Research, Via Camillo Rosalba 35/37, 70124, Bari, Italy.
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Giuseppe Nasso
- Department of Cardiac Surgery, Anthea Hospital, GVM Care & Research, Via Camillo Rosalba 35/37, 70124, Bari, Italy
| | - Giuseppe Speziale
- Department of Cardiac Surgery, Anthea Hospital, GVM Care & Research, Via Camillo Rosalba 35/37, 70124, Bari, Italy
| |
Collapse
|
9
|
Quantitative Gas Exchange in Extracorporeal Membrane Oxygenation-A New Device: Accuracy, Approach-based Difficulties, and Caloric Targeting. ASAIO J 2023; 69:61-68. [PMID: 35759721 DOI: 10.1097/mat.0000000000001662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Measurement of oxygen uptake (VO 2 ) and carbon dioxide removal (VCO 2 ) on membrane lungs (MLs) during extracorporeal membrane oxygenation (ECMO) provides potential for improved and safer therapy. Real-time monitoring of ML function and degradation, calculating caloric needs as well as cardiac output, and weaning algorithms are among the future possibilities. Our study compared the continuous measurement of the standalone Quantum Diagnostics System (QDS) with the published Measuring Energy Expenditure in ECMO patients (MEEP) approach, which calculates sequential VO 2 and VCO 2 values via blood gas analysis and a physiologic gas content model. Thirty-nine datasets were acquired during routine venovenous ECMO intensive care treatment and analyzed. VO 2 was clinically relevant underestimated via the blood-sided measurement of the QDS compared to the MEEP approach (mean difference -42.61 ml/min, limits of agreement [LoA] -2.49/-87.74 ml), which could be explained by the missing dissolved oxygen fraction of the QDS equation. Analysis of VCO 2 showed scattered values with wide limits of agreement (mean difference 54.95 ml/min, LoA 231.26/-121.40 ml/min) partly explainable by a calculation error of the QDS. We described potential confounders of gas-sided measurements in general which need further investigation and recommendations for enhanced devices.
Collapse
|
10
|
Complications Associated With Venovenous Extracorporeal Membrane Oxygenation-What Can Go Wrong? Crit Care Med 2022; 50:1809-1818. [PMID: 36094523 DOI: 10.1097/ccm.0000000000005673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Despite increasing use and promising outcomes, venovenous extracorporeal membrane oxygenation (V-V ECMO) introduces the risk of a number of complications across the spectrum of ECMO care. This narrative review describes the variety of short- and long-term complications that can occur during treatment with ECMO and how patient selection and management decisions may influence the risk of these complications. DATA SOURCES English language articles were identified in PubMed using phrases related to V-V ECMO, acute respiratory distress syndrome, severe respiratory failure, and complications. STUDY SELECTION Original research, review articles, commentaries, and published guidelines from the Extracorporeal Life support Organization were considered. DATA EXTRACTION Data from relevant literature were identified, reviewed, and integrated into a concise narrative review. DATA SYNTHESIS Selecting patients for V-V ECMO exposes the patient to a number of complications. Adequate knowledge of these risks is needed to weigh them against the anticipated benefit of treatment. Timing of ECMO initiation and transfer to centers capable of providing ECMO affect patient outcomes. Choosing a configuration that insufficiently addresses the patient's physiologic deficit leads to consequences of inadequate physiologic support. Suboptimal mechanical ventilator management during ECMO may lead to worsening lung injury, delayed lung recovery, or ventilator-associated pneumonia. Premature decannulation from ECMO as lungs recover can lead to clinical worsening, and delayed decannulation can prolong exposure to complications unnecessarily. Short-term complications include bleeding, thrombosis, and hemolysis, renal and neurologic injury, concomitant infections, and technical and mechanical problems. Long-term complications reflect the physical, functional, and neurologic sequelae of critical illness. ECMO can introduce ethical and emotional challenges, particularly when bridging strategies fail. CONCLUSIONS V-V ECMO is associated with a number of complications. ECMO selection, timing of initiation, and management decisions impact the presence and severity of these potential harms.
Collapse
|
11
|
Winiszewski H, Guinot PG, Schmidt M, Besch G, Piton G, Perrotti A, Lorusso R, Kimmoun A, Capellier G. Optimizing PO 2 during peripheral veno-arterial ECMO: a narrative review. Crit Care 2022; 26:226. [PMID: 35883117 PMCID: PMC9316319 DOI: 10.1186/s13054-022-04102-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 01/01/2023] Open
Abstract
During refractory cardiogenic shock and cardiac arrest, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used to restore a circulatory output. However, it also impacts significantly arterial oxygenation. Recent guidelines of the Extracorporeal Life Support Organization (ELSO) recommend targeting postoxygenator partial pressure of oxygen (PPOSTO2) around 150 mmHg. In this narrative review, we intend to summarize the rationale and evidence for this PPOSTO2 target recommendation. Because this is the most used configuration, we focus on peripheral VA-ECMO. To date, clinicians do not know how to set the sweep gas oxygen fraction (FSO2). Because of the oxygenator's performance, arterial hyperoxemia is common during VA-ECMO support. Interpretation of oxygenation is complex in this setting because of the dual circulation phenomenon, depending on both the native cardiac output and the VA-ECMO blood flow. Such dual circulation results in dual oxygenation, with heterogeneous oxygen partial pressure (PO2) along the aorta, and heterogeneous oxygenation between organs, depending on the mixing zone location. Data regarding oxygenation during VA-ECMO are scarce, but several observational studies have reported an association between hyperoxemia and mortality, especially after refractory cardiac arrest. While hyperoxemia should be avoided, there are also more and more studies in non-ECMO patients suggesting the harm of a too restrictive oxygenation strategy. Finally, setting FSO2 to target strict normoxemia is challenging because continuous monitoring of postoxygenator oxygen saturation is not widely available. The threshold of PPOSTO2 around 150 mmHg is supported by limited evidence but aims at respecting a safe margin, avoiding both hypoxemia and severe hyperoxemia.
Collapse
Affiliation(s)
- Hadrien Winiszewski
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France. .,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France.
| | - Pierre-Grégoire Guinot
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Dijon, Dijon, France
| | - Matthieu Schmidt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, Paris, France
| | - Guillaume Besch
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Gael Piton
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Andrea Perrotti
- Service de Chirurgie Cardiaque, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Antoine Kimmoun
- Service de Médecine Intensive Réanimation, centre hospitalier universitaire de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Gilles Capellier
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| |
Collapse
|
12
|
Zhao YC, Zhao X, Fu GW, Huang MJ, Li XX, Sun QQ, Kan YB, Li J, Wang SL, Ma WT, Xu QF, Liu QL, Li HB. Heparin-free after 3000 IU heparin loaded in veno-venous ECMO supported acute respiratory failure patients with hemorrhage risk: a novel anti-coagulation strategy. Thromb J 2022; 20:36. [PMID: 35761333 PMCID: PMC9235184 DOI: 10.1186/s12959-022-00396-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background The anti-coagulation protocol of patients with hemorrhage risk primary disease who need extracorporeal membrane oxygenation (ECMO) supported is controversial. This study evaluated the feasibility of a new anti-coagulation strategy, that is heparin-free after 3000 IU heparin loaded in veno-venous ECMO (VV ECMO) supported acute respiratory failure patients with hemorrhage risk. Methods A retrospective study was performed in a series of hemorrhage risk patients supported with VV ECMO at the First Affiliated Hospital of Zhengzhou University, between June 2012 to Sept 2020. A total of 70 patients received a low heparin bolus of 3000 units for cannulation but without subsequent, ongoing heparin administration. Patients were divided into survival (n = 25) and non-survival group (n = 45). Data of coagulation, hemolysis and membrane lung function were calculated and analyzed. The complications of patients were recorded. Finally, the binary Logistic regression was conducted. Results The longest heparin-free time was 216 h, and the mean heparin-free time was 102 h. Compared with survivors, the non-survivors were showed higher baseline SOFA score and lower platelet counts in 0.5 h, 24 h, 48 h and 96 h after ECMO applied. However, there was no significant differences between survivors and non-survivors in ACT, APTT, INR, D-dimer, fibrinogen, LDH, blood flow rate, Δp and Ppost-MLO2 (all p < 0.05) of all different time point. Moreover, only the baseline SOFA score was significantly associated with mortality (p < 0.001, OR(95%CI): 2.754 (1.486–5.103)) while the baseline levels of ACT, APTT, INR, platelet, D-dimer, fibrinogen and LDH have no association with mortality. The percentage of thrombosis complications was 54.3% (38/70) including 3 oxygenator changed but there was no significant difference of complications in survival and non-survival groups (p > 0.05). Conclusions The anticoagulation protocol that no heparin after a 3000 units heparin bolus in VV ECMO supported acute respiratory failure patients with hemorrhage risk is feasible.
Collapse
Affiliation(s)
- Yang-Chao Zhao
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China.
| | - Xi Zhao
- Department of Cardiology, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Cardiovascular Center, Zhengzhou, 450052, Henan, China
| | - Guo-Wei Fu
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Ming-Jun Huang
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Xing-Xing Li
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Qian-Qian Sun
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Ya-Bai Kan
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Jun Li
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, JianShe Road 1, Zhengzhou, 450052, Henan, China
| | - Shi-Lei Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wen-Tao Ma
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin-Fu Xu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qi-Long Liu
- Department of Surgery ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong-Bin Li
- Department of Surgery ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
13
|
Alkaline Liquid Ventilation of the Membrane Lung for Extracorporeal Carbon Dioxide Removal (ECCO 2R): In Vitro Study. MEMBRANES 2021; 11:membranes11070464. [PMID: 34206672 PMCID: PMC8306443 DOI: 10.3390/membranes11070464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH–CO2 interactions. Subsequently, we compared NaOH infusion, named “alkaline liquid ventilation”, to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min−1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L−1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L−1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min−1) for each fluid plus 10 L × min−1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min−1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min−1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.
Collapse
|
14
|
Malfertheiner MV, Broman LM, Vercaemst L, Belliato M, Aliberti A, Di Nardo M, Swol J, Barrett N, Pappalardo F, Bělohlávek J, Taccone FS, Millar JE, Crawford L, Lorusso R, Suen JY, Fraser JF. Ex vivo models for research in extracorporeal membrane oxygenation: a systematic review of the literature. Perfusion 2021; 35:38-49. [PMID: 32397884 DOI: 10.1177/0267659120907439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With ongoing progress of components of extracorporeal membrane oxygenation including improvements of oxygenators, pumps, and coating materials, extracorporeal membrane oxygenation became increasingly accepted in the clinical practice. A suitable testing in an adequate setup is essential for the development of new technical aspects. Relevant tests can be conducted in ex vivo models specifically designed to test certain aspects. Different setups have been used in the past for specific research questions. We conducted a systematic literature review of ex vivo models of extracorporeal membrane oxygenation components. MEDLINE and Embase were searched between January 1996 and October 2017. The inclusion criteria were ex vivo models including features of extracorporeal membrane oxygenation technology. The exclusion criteria were clinical studies, abstracts, studies in which the model of extracorporeal membrane oxygenation has been reported previously, and studies not reporting on extracorporeal membrane oxygenation components. A total of 50 studies reporting on different ex vivo extracorporeal membrane oxygenation models have been identified from the literature search. Models have been grouped according to the specific research question they were designed to test for. The groups are focused on oxygenator performance, pump performance, hemostasis, and pharmacokinetics. Pre-clinical testing including use of ex vivo models is an important step in the development and improvement of extracorporeal membrane oxygenation components and materials. Furthermore, ex vivo models offer valuable insights for clinicians to better understand the consequences of choice of components, setup, and management of an extracorporeal membrane oxygenation circuit in any given condition. There is a need to standardize the reporting of pre-clinical studies in this area and to develop best practice in their design.
Collapse
Affiliation(s)
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Leen Vercaemst
- Perfusion Department, University Hospital Gasthuisberg, Louvain, Belgium
| | - Mirko Belliato
- U.O.C. Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Aliberti
- U.O.C. Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Justyna Swol
- Department of Pulmonology, Intensive Care Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Nicholas Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Federico Pappalardo
- Department of Cardiothoracic Anesthesia and Intensive Care, San Raffaele Hospital, Milan, Italy
| | - Jan Bělohlávek
- Second Department of Medicine, Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Praha, Czech Republic
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Lachlan Crawford
- Critical Care Research Group, Prince Charles Hospital, Brisbane, QLD, Australia
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Hospital (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Jacky Y Suen
- Critical Care Research Group, Prince Charles Hospital, Brisbane, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Belliato M, Cremascoli L, Epis F, Ferrari F, Quattrone MG, Malfertheiner MV, Broman LM, Aliberti A, Taccone FS, Iotti GA, Lorusso R. Carbon Dioxide Elimination During Veno-Venous Extracorporeal Membrane Oxygenation Weaning: A Pilot Study. ASAIO J 2021; 67:700-708. [PMID: 33074866 DOI: 10.1097/mat.0000000000001282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Veno-venous extracorporeal membrane oxygenation (V-V ECMO) represents a component of the treatment strategy for severe respiratory failure. Clinical evidence on the management of the lung during V-V ECMO are limited just as the consensus regarding timing of weaning. The monitoring of the carbon dioxide (CO2) removal (V'CO2TOT) is subdivided into two components: the membrane lung (ML) and the native lung (NL) are both taken into consideration to evaluate the improvement of the function of the lung and to predict the time to wean off ECMO. We enrolled patients with acute respiratory distress syndrome (ARDS). The V'CO2NL ratio (V'CO2NL/V'CO2TOT) value was calculated based on the distribution of CO2 between the NL and the ML. Of 18 patients, 15 were successfully weaned off of V-V ECMO. In this subgroup, we observed a significant increase in the V'CO2NL ratio comparing the median values of the first and last quartiles (0.32 vs. 0.53, p = 0.0045), without observing any modifications in the ventilation parameters. An increase in the V'CO2NL ratio, independently from any change in ventilation could, despite the limitations of the study, indicate an improvement in pulmonary function and may be used as a weaning index for ECMO.
Collapse
Affiliation(s)
- Mirko Belliato
- From the UOS Advanced Respiratory Intensive Care Unit, UOC Anestesia e Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Cremascoli
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Francesco Epis
- 2nd Intensive Care Unit, UOC Anestesia e Rianimazione II Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fiorenza Ferrari
- From the UOS Advanced Respiratory Intensive Care Unit, UOC Anestesia e Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria G Quattrone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Maximilian V Malfertheiner
- Department of Internal Medicine II, Cardiology and Pneumology, Intensive Care, University Medical Center Regensburg, Regensburg, Germany
| | - Lars M Broman
- ECMO Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Aliberti
- From the UOS Advanced Respiratory Intensive Care Unit, UOC Anestesia e Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Cliniques Universitaires de Bruxelles (CUB) Erasme, Brussels, Belgium
| | - Giorgio A Iotti
- From the UOS Advanced Respiratory Intensive Care Unit, UOC Anestesia e Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Hospital, Maastricht, The Netherlands
| |
Collapse
|
16
|
Steiger T, Philipp A, Hiller KA, Müller T, Lubnow M, Lehle K. Different mechanisms of oxygenator failure and high plasma von Willebrand factor antigen influence success and survival of venovenous extracorporeal membrane oxygenation. PLoS One 2021; 16:e0248645. [PMID: 33735282 PMCID: PMC7971568 DOI: 10.1371/journal.pone.0248645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Failure of membrane oxygenator (MO) function of venovenous extracorporeal membrane oxygenators (VV ECMO) remains problematic. The development of device-induced coagulation disorder (COD) or worsened gas transfer (WGT) necessitates a system exchange. The aim was to correlate von Willebrand factor antigen (vWF:Ag) with the predisposition to MO failure and mortality. METHODS Laboratory parameters (inflammation, coagulation) and ECMO-related data from 31 VV ECMO patients were analyzed before and after the first MO exchange. Study groups were identified according to the exchange reasons (COD, WGT) and the extent of vWF:Ag (low, ≤425%; high, >425%). RESULTS vWF:Ag remained unchanged after system exchange. High vWF:Ag was associated with systemic endothelial activation of older and obese patients with elevated SOFA score, increased norepinephrine and higher requirement of continuous renal replacement therapy without an effect on MO runtime and mortality. Including the mechanism of MO failure (COD, WGT), various patient group emerged. COD/low vWF:Ag summarized younger and less critically ill patients that benefit mainly from ECMO by a significant improvement of their inflammatory and coagulation status (CRP, D-dimers, fibrinogen) and highest survival rate (91%). Instead, WGT/high vWF:Ag presented older and more obese patients with a two-digit SOFA score, highest norepinephrine, and aggravated gas transfer. They benefited temporarily from system exchange but with worst survival (33%). CONCLUSIONS vWF:Ag levels alone cannot predict early MO failure and outcome in VV ECMO patients. Probably, the mechanism of clotting disorder in combination with the vWF:Ag level seems to be essential for clot formation within the MO. In addition, vWF:Ag levels allows the identification different patient populations In particular, WGT/high vWF:Ag represented a critically ill population with higher ECMO-associated mortality.
Collapse
Affiliation(s)
- Tamara Steiger
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Müller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
17
|
How I approach membrane lung dysfunction in patients receiving ECMO. Crit Care 2020; 24:671. [PMID: 33256824 PMCID: PMC7704102 DOI: 10.1186/s13054-020-03388-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
|
18
|
Shekar K, Buscher H, Brodie D. Protocol-driven daily optimisation of venovenous extracorporeal membrane oxygenation blood flows: an alternate paradigm? J Thorac Dis 2020; 12:6854-6860. [PMID: 33282387 PMCID: PMC7711363 DOI: 10.21037/jtd-20-1515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Venovenous extracorporeal membrane oxygenation (VV ECMO) is now an established modality of support for patients with the who are failing evidence-based conventional therapies. Minimising ventilator-induced lung injury is the guiding principle behind patient management with VV ECMO. Patients with acute respiratory distress syndrome (ARDS) supported with VV ECMO are liberated from ECMO at a stage when native lungs have recovered sufficiently to support physiologic demands and the risks of iatrogenic lung injuries after discontinuation of ECMO are perceived to be small. However, native lung recovery is a dynamic process and patients rely on varying degrees of contributions from both native lungs and ECMO for gas exchange support. Patients often demonstrate near total ECMO dependence for oxygenation and decarboxylation early in the course of the illness and this may necessitate higher ECMO blood flow rates (EBFRs). Although, reliance on high EBFR for oxygenation support may remain variable over the course of ECMO, blood flow requirements typically diminish over time as native lungs start to recover. Currently, protocol-driven modulation of the EBFR based on changing physiologic needs is not common practice and consequently patients may remain on higher than physiologically necessary EBFR. This exposes the patient to potential risks because maintaining higher blood flows often requires a less restrictive fluid balance and deeper sedation. Both may be harmful in the setting of recovery from ARDS. In this article, we propose a strategy that involves daily assessments of native lung function and a protocol-driven daily optimisation of EBFR. This is followed by optimisation of sweep gas flow rate (SGFR) and the fraction of delivered oxygen in the sweep gas (FdO2). This staged approach to weaning VV ECMO allows us to fully utilise the “decoupling” of oxygenation and decarboxylation that is possible only during extracorporeal support. This approach may benefit patients by allowing for greater fluid restriction, more aggressive fluid removal, expedited weaning of sedation and neuromuscular blocking agents (NMBAs), and early physical rehabilitation. Ultimately, prospective studies are needed to evaluate optimal VV ECMO weaning practices
Collapse
Affiliation(s)
- Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane and Bond University, Gold Coast, Queensland, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine and Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Brodie
- Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, NY, USA.,Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
19
|
Development of a CO 2 Sensor for Extracorporeal Life Support Applications. SENSORS 2020; 20:s20133613. [PMID: 32605000 PMCID: PMC7374331 DOI: 10.3390/s20133613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022]
Abstract
Measurement of carbon dioxide (CO2) in medical applications is a well-established method for monitoring patient's pulmonary function in a noninvasive way widely used in emergency, intensive care, and during anesthesia. Even in extracorporeal-life support applications, such as Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal Membrane Oxygenation (ECMO), and cardiopulmonary by-pass (CPB), measurement of the CO2 concentration in the membrane oxygenator exhaust gas is proven to be useful to evaluate the treatment progress as well as the performance of the membrane oxygenator. In this paper, we present a new optical sensor specifically designed for the measurement of CO2 concentration in oxygenator exhaust gas. Further, the developed sensor allows measurement of the gas flow applied to the membrane oxygenator as well as the estimation of the CO2 removal rate. A heating module is implemented within the sensor to avoid water vapor condensation. Effects of temperature on the sensor optical elements of the sensors are disclosed, as well as a method to avoid signal-temperature dependency. The newly developed sensor has been tested and compared against a reference device routinely used in clinical practice in both laboratory and in vivo conditions. Results show that sensor accuracy fulfills the requirements of the ISO standard, and that is suitable for clinical applications.
Collapse
|
20
|
Abstract
OBJECTIVES Cardiogenic shock is a highly morbid condition in which inadequate end-organ perfusion leads to death if untreated. Peripheral venoarterial extracorporeal membrane oxygenation is increasingly used to restore systemic perfusion despite limited understanding of how to optimally titrate support. This review provides insights into the physiologic basis of extracorporeal membrane oxygenation support and presents an approach to extracorporeal membrane oxygenation management in the cardiogenic shock patient. DATA SOURCES, STUDY SELECTION, AND DATA EXTRACTION Data were obtained from a PubMed search of the most recent medical literature identified from MeSH terms: extracorporeal membrane oxygenation, cardiogenic shock, percutaneous mechanical circulatory support, and heart failure. Articles included original articles, case reports, and review articles. DATA SYNTHESIS Current evidence detailing the use of extracorporeal membrane oxygenation to support patients in cardiogenic shock is limited to isolated case reports and single institution case series focused on patient outcomes but lacking in detailed approaches to extracorporeal membrane oxygenation management. Unlike medical therapy, in which dosages are either prescribed or carefully titrated to specific variables, extracorporeal membrane oxygenation is a mechanical support therapy requiring ongoing titration but without widely accepted variables to guide treatment. Similar to mechanical ventilation, extracorporeal membrane oxygenation can provide substantial benefit or induce significant harm. The widespread use and present lack of data to guide extracorporeal membrane oxygenation support demands that intensivists adopt a physiologically-based approach to management of the cardiogenic shock patient on extracorporeal membrane oxygenation. CONCLUSIONS Extracorporeal membrane oxygenation is a powerful mechanical circulatory support modality capable of rapidly restoring systemic perfusion yet lacking in defined approaches to management. Adopting a management approach based physiologic principles provides a basis for care.
Collapse
Affiliation(s)
- Steven P Keller
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
21
|
Montalti A, Belliato M, Gelsomino S, Nalon S, Matteucci F, Parise O, de Jong M, Makhoul M, Johnson DM, Lorusso R. Continuous monitoring of membrane lung carbon dioxide removal during ECMO: experimental testing of a new volumetric capnometer. Perfusion 2019; 34:538-543. [DOI: 10.1177/0267659119833233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Extracorporeal membrane oxygenation constitutes a complex support modality, and accurate monitoring is required. An ideal monitoring system should promptly detect ECMO malfunctions and provide real-time information to optimize the patient–machine interactions. We tested a new volumetric capnometer which enables continuous monitoring of membrane lung carbon dioxide removal (V′CO2ML), to help in estimating the oxygenator performance, in terms of CO2 removal and oxygenator dead space (VDsML). Methods: This study was conducted on nine pigs undergoing veno-arterial ECMO due to cardiogenic shock after induced acute myocardial infarction. The accuracy and reliability of the prototype of the volumetric capnometer (CO2RESET™, by Eurosets srl, Medolla, Italy) device was evaluated for V′CO2ML and VDsML measurements by comparing the obtained measurements from the new device to a control capnometer with the sweep gas values. Measurements were taken at five different levels of gas flow/blood flow ratio (0.5-1.5). Agreement between the corresponding measurements was taken with the two methods. We expected that 95% of differences were between d − 1.96s and d + 1.96s. Results: In all, 120 coupled measurements from each device were obtained for the V′CO2ML calculation and 40 for the VDsML. The new capnometer mean percentage bias (95% confidence interval limits of agreement) was 3.86% (12.07-4.35%) for V′CO2ML and 2.62% (8.96-14.20%) for VDsML. A negative proportional bias for V′CO2ML estimation with the new device was observed with a mean of 3.86% (12.07-4.35%). No correlations were found between differences in the coupled V′CO2ML and VDsML measurements and the gas flow/blood flow ratio or temperature. Coupled measurements for V′CO2ML showed strong correlation (rs = 0.991; p = 0.0005), as did VDsML calculations (rs = 0.973; p = 0.0005). Conclusion: The volumetric capnometer is reliable for continuous monitoring of CO2 removal by membrane lung and VDsML calculations. Further studies are necessary to confirm these data.
Collapse
Affiliation(s)
- Alice Montalti
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
- UOC Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mirko Belliato
- UOC Anestesia e Rianimazione 1, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Sandro Gelsomino
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Sandro Nalon
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Francesco Matteucci
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Orlando Parise
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Monique de Jong
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maged Makhoul
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel M Johnson
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart+Vascular Centre, Maastricht University Medical Center, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|