1
|
Jeon OH, Kim K, Kim CG, Choi BH, Lee JH, Kim BM, Kim HK. Novel locally nebulized indocyanine green for simultaneous identification of tumor margin and intersegmental plane. Int J Surg 2024; 110:4708-4715. [PMID: 38752517 PMCID: PMC11325942 DOI: 10.1097/js9.0000000000001581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Segmentectomy, recommended for early-stage lung cancer or compromised lung function, demands precise tumor detection and intersegmental plane identification. While indocyanine green (ICG) commonly aids in these aspects using near-infrared imaging, its separate administrations through different routes and times can lead to complications and patient anxiety. This study aims to develop a lung-specific delivery method by nebulizing low-dose ICG to targeted lung segments, allowing simultaneous detection of lung tumors and intersegmental planes across diverse animal models. METHODS To optimizing the dose of ICG for lung tumor and interlobar fissure detection, different doses of ICG (0.25, 0.1, and 0.05 mg/kg) were nebulized to rabbit lung tumor models. The distribution of locally nebulized ICG in targeted segments was studied to evaluate the feasibility of detecting lung tumor and intersegmental planes in canine lung pseudotumor models. RESULTS Near-infrared fluorescence imaging demonstrated clear visualization of lung tumor margin and interlobar fissure using local nebulization of 0.1 mg/kg ICG for only 4 min during surgery in the rabbit models. In the canine model, the local nebulization of 0.05 mg/kg of ICG into the target segment enabled clear visualization of pseudotumor and intersegmental planes for 30 min. CONCLUSIONS This innovative approach achieves a reduction in ICG dose and prolonged the visualization time of the intersegmental plane and effectively eliminates the need for the hurried marking of tumors and intersegmental planes. The authors anticipate that lung-specific delivery of ICG will prove valuable for image-guided limited resection of lung tumors in clinical practice.
Collapse
Affiliation(s)
- Ok Hwa Jeon
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Department of Biomedical Sciences, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Kyungsu Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Department of Biomedical Sciences, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Chang Geun Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Department of Biomedical Sciences, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Jun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Beop-Min Kim
- Department of Bio-Convergence, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, College of Medicine, Korea University
- Department of Biomedical Sciences, College of Medicine, Korea University
- Image Guided Precision Cancer Surgery Institute, Seoul, Korea
| |
Collapse
|
2
|
Gelzinis TA. Indocyanine Green in Thoracic and Esophageal Surgery: What Anesthesiologists Need to Know. J Cardiothorac Vasc Anesth 2024; 38:7-11. [PMID: 37925227 DOI: 10.1053/j.jvca.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Theresa A Gelzinis
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
3
|
Jeon OH, Choi BH, Rho J, Kim K, Lee JH, Lee J, Kim BM, Kim HK. Optimization of Indocyanine Green for Intraoperative Fluorescent Image-Guided Localization of Lung Cancer; Analysis Based on Solid Component of Lung Nodule. Cancers (Basel) 2023; 15:3643. [PMID: 37509304 PMCID: PMC10377801 DOI: 10.3390/cancers15143643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
ICG fluorescence imaging has been used to detect lung cancer; however, there is no consensus regarding the optimization of the indocyanine green (ICG) injection method. The aim of this study was to determine the optimal dose and timing of ICG for lung cancer detection using animal models and to evaluate the feasibility of ICG fluorescence in lung cancer patients. In a preclinical study, twenty C57BL/6 mice with footpad cancer and thirty-three rabbits with VX2 lung cancer were used. These animals received an intravenous injection of ICG at 0.5, 1, 2, or 5 mg/kg, and the cancers were detected using a fluorescent imaging system after 3, 6, 12, and 24 h. In a clinical study, fifty-one patients diagnosed with lung cancer and scheduled to undergo surgery were included. Fluorescent images of lung cancer were obtained, and the fluorescent signal was quantified. Based on a preclinical study, the optimal injection method for lung cancer detection was 2 mg/kg ICG 12 h before surgery. Among the 51 patients, ICG successfully detected 37 of 39 cases with a consolidation-to-tumor (C/T) ratio of >50% (TNR: 3.3 ± 1.2), while it failed in 12 cases with a C/T ratio ≤ 50% and 2 cases with anthracosis. ICG injection at 2 mg/kg, 12 h before surgery was optimal for lung cancer detection. Lung cancers with the C/T ratio > 50% were successfully detected using ICG with a detection rate of 95%, but not with the C/T ratio ≤ 50%. Therefore, further research is needed to develop fluorescent agents targeting lung cancer.
Collapse
Affiliation(s)
- Ok Hwa Jeon
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jiyun Rho
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyungsu Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Jinhwan Lee
- Department of Pathology, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Beop-Min Kim
- Department of Biomedical Engineering, Korea University College of Health Science, Seoul 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Ng CSH, Ong BH, Chao YK, Wright GM, Sekine Y, Wong I, Hao Z, Zhang G, Chaturvedi H, Thammineedi SR, Law S, Kim HK. Use of Indocyanine Green Fluorescence Imaging in Thoracic and Esophageal Surgery. Ann Thorac Surg 2023; 115:1068-1076. [PMID: 36030832 DOI: 10.1016/j.athoracsur.2022.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Fluorescence imaging using indocyanine green in thoracic and esophageal surgery is gaining popularity because of the potential to facilitate surgical planning, to stage disease, and to reduce postoperative complications. To optimize use of fluorescence imaging in thoracic and esophageal surgery, an expert panel sought to establish a set of recommendations at a consensus meeting. METHODS The panel included 12 experts in thoracic and upper gastrointestinal surgery from Asia-Pacific countries. Before meeting, 7 focus areas were defined: intersegmental plane identification for sublobar resections; pulmonary nodule localization; lung tumor detection; bullous lesion detection; lymphatic mapping of lung tumors; evaluation of gastric conduit perfusion; and lymphatic mapping in esophageal surgical procedures. A literature search of the PubMed database was conducted using keywords indocyanine green, fluorescence, thoracic, surgery, and esophagectomy. At the meeting, panelists addressed each focus area by discussing the most relevant evidence and their clinical experiences. Consensus statements were derived from the proceedings, followed by further discussions, revisions, finalization, and unanimous agreement. Each statement was assigned a level of evidence and a grade of recommendation. RESULTS A total of 9 consensus recommendations were established. Identification of the intersegmental plane for sublobar resections, localization of pulmonary nodules, lymphatic mapping in lung tumors, and assessment of gastric conduit perfusion were applications of fluorescence imaging that have the most robust current evidence. CONCLUSIONS Based on best available evidence and expert opinions, these consensus recommendations may facilitate thoracic and esophageal surgery using fluorescence imaging.
Collapse
Affiliation(s)
- Calvin Sze-Hang Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore
| | - Yin Kai Chao
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, Taiwan
| | - Gavin M Wright
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Yasuo Sekine
- Department of Thoracic Surgery, Yachiyo Medical Center, Tokyo Women's Medical University, Yachiyo, Japan
| | - Ian Wong
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhexue Hao
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | - Simon Law
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
5
|
Das P, Santos S, Park GK, Hoseok I, Choi HS. Real-Time Fluorescence Imaging in Thoracic Surgery. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 52:205-220. [PMID: 31403028 PMCID: PMC6687041 DOI: 10.5090/kjtcs.2019.52.4.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.
Collapse
Affiliation(s)
- Priyanka Das
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena Santos
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|