1
|
Ito M, Morimoto K, Hijikata M, Hasegawa H, Wakabayashi K, Miyabayashi A, Keicho N. Severe bronchiectasis and chronic rhinosinusitis due to homozygous WFDC2 Variants: The first three cases reported from Japan. Respir Med Case Rep 2025; 55:102214. [PMID: 40401042 PMCID: PMC12093231 DOI: 10.1016/j.rmcr.2025.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/23/2025] Open
Abstract
We report three cases of bronchiectasis caused by homozygous WFDC2 variants. The ages at diagnosis of bronchiectasis were 18, 24, and 16 years, and all patients had a history of chronic sinusitis since childhood. Despite low nasal nitric oxide levels, the radiologic features resembled those of cystic fibrosis, characterized by bronchiectasis predominantly in the upper lobes. All patients experienced frequent exacerbations and respiratory dysfunction, even with long-term macrolide therapy. Consequently, two of the three patients required lung transplantation. Considering the possibility of founder mutations, WFDC2 variants should be included in diagnostic panels for patients with sinopulmonary disease in Asian populations.
Collapse
Affiliation(s)
- Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti‐Tuberculosis Association, Tokyo, Japan
| | - Hirotsugu Hasegawa
- Department of Respiratory Medicine, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti‐Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti‐Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti‐Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
2
|
Tsouprou M, Koumpagioti D, Botsa E, Douros K, Moriki D. Utilization of Inhaled Antibiotics in Pediatric Non-Cystic Fibrosis Bronchiectasis: A Comprehensive Review. Antibiotics (Basel) 2025; 14:165. [PMID: 40001409 PMCID: PMC11851904 DOI: 10.3390/antibiotics14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The lack of available treatments in pediatric non-cystic fibrosis (non-CF) bronchiectasis is a major concern, especially in the context of the increasing disease burden due to better detection rates with advanced imaging techniques. Recurrent infections in these patients are the main cause of deterioration, leading to impaired lung function and increasing the risk of morbidity and mortality. Since pediatric non-CF bronchiectasis with early recognition and appropriate treatment can be reversible, optimal management is an issue of growing significance. The use of inhaled antibiotics as a treatment option, although a standard of care for CF patients, has been poorly studied in patients with non-CF bronchiectasis, especially in children. In this review, we present the current data on the potential use of inhaled antibiotics in the treatment of non-CF bronchiectasis and assess their safety and efficacy profile, focusing mainly on children. We conclude that inhaled antibiotics as an adjuvant maintenance treatment option could be tried in a subgroup of patients with frequent exacerbations and recent or chronic Pseudomonas aeruginosa infection as they appear to have beneficial effects on exacerbation rate and bacterial load with minimal safety concerns. However, the level of evidence in children is extremely low; therefore, further research is needed on the validity of this recommendation.
Collapse
Affiliation(s)
- Maria Tsouprou
- Pediatric Allergy and Respiratory Unit, 3rd Department of Pediatrics, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.T.); (D.M.)
- Department of Pediatrics, 1st Pediatric Clinic, Agia Sofia Hospital, 11527 Athens, Greece;
| | | | - Evanthia Botsa
- Department of Pediatrics, 1st Pediatric Clinic, Agia Sofia Hospital, 11527 Athens, Greece;
| | - Konstantinos Douros
- Pediatric Allergy and Respiratory Unit, 3rd Department of Pediatrics, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.T.); (D.M.)
| | - Dafni Moriki
- Pediatric Allergy and Respiratory Unit, 3rd Department of Pediatrics, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.T.); (D.M.)
| |
Collapse
|
3
|
Black HA, de Proce SM, Campos JL, Meynert A, Halachev M, Marsh JA, Hirst RA, O'Callaghan C, Shoemark A, Toddie‐Moore D, Santoyo‐Lopez J, Murray J, Macleod K, Urquhart DS, Unger S, Aitman TJ, Mill P. Whole genome sequencing enhances molecular diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:3322-3332. [PMID: 39115449 PMCID: PMC11600997 DOI: 10.1002/ppul.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in >50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. METHODS WGS was used to screen for pathogenic variants in eight patients with PCD. RESULTS 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. CONCLUSION Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.
Collapse
Affiliation(s)
- Holly A. Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
| | - Sophie Marion de Proce
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jose L. Campos
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Mihail Halachev
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Robert A. Hirst
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Chris O'Callaghan
- Department of Respiratory Sciences, Centre for PCD Diagnosis and ResearchUniversity of LeicesterLeicesterUK
| | - Amelia Shoemark
- School of Medicine, Division of Molecular and Clinical MedicineUniversity of DundeeDundeeUK
| | - Daniel Toddie‐Moore
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | | | - Jennie Murray
- South East of Scotland Genetics ServiceWestern General HospitalEdinburghUK
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kenneth Macleod
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
| | - Don S. Urquhart
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep MedicineRoyal Hospital for Sick ChildrenEdinburghUK
- Department of Child Life and HealthUniversity of EdinburghEdinburghUK
| | - Timothy J. Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
De Wachter E, De Boeck K, Sermet-Gaudelus I, Simmonds NJ, Munck A, Naehrlich L, Barben J, Boyd C, Veen SJ, Carr SB, Fajac I, Farrell PM, Girodon E, Gonska T, Grody WW, Jain M, Jung A, Kerem E, Raraigh KS, van Koningsbruggen-Rietschel S, Waller MD, Southern KW, Castellani C. ECFS standards of care on CFTR-related disorders: Towards a comprehensive program for affected individuals. J Cyst Fibros 2024; 23:388-397. [PMID: 38388234 DOI: 10.1016/j.jcf.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
After three publications defining an updated guidance on the diagnostic criteria for people with cystic fibrosis transmembrane conductance regulator (CFTR)-related disorders (pwCFTR-RDs), establishing its relationship to CFTR-dysfunction and describing the individual disorders, this fourth and last paper in the series addresses some critical challenges facing health care providers and pwCFTR-RD. Topics included are: 1) benefits and obstacles to collect data from pwCFTR-RD are discussed, together with the opportunity to integrate them into established CF-registries; 2) the potential of infants designated CRMS/CFSPID to develop a CFTR-RD and how to communicate this information; 3) a description of the challenges in genetic counseling, with particular regard to phenotypic variability, unknown long-term evolution, CFTR testing and pregnancy termination 4) a proposal for the assessment of potential barriers to the implementation and dissemination of the produced documents to health care professionals involved in the care of pwCFTR-RD and a process to monitor the implementation of the CFTR-RD recommendations; 5) clinical trials investigating the efficacy of CFTR modulators in CFTR-RD and how endpoints and outcomes might be adapted to the heterogeneity of these disorders.
Collapse
Affiliation(s)
- E De Wachter
- Cystic Fibrosis Center, Pediatric Pulmonology department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - K De Boeck
- Department of Pediatrics, University of Leuven, Leuven, Belgium
| | - I Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France; Université de Paris, Paris, France; Centre de référence Maladies Rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants malades, Paris, France
| | - N J Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital and Imperial College, London, UK
| | - A Munck
- Paediatric Cystic Fibrosis centre, Hôpital Necker Enfants Malades, AP-HP Paris, France
| | - L Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Germany
| | - J Barben
- Paediatric Pulmonology & CF Centre, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | | | | | - S B Carr
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, and Imperial College, London, UK
| | - I Fajac
- Assistance Publique-Hôpitaux de Paris, Thoracic Department and National Cystic Fibrosis Reference Centre, Cochin Hospital, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 75014 Paris, France
| | - P M Farrell
- Departments of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - E Girodon
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP.Centre - Université de Paris Cité, Hôpital Cochin, Paris, France
| | - T Gonska
- Division of Pediatric Gastroenterology, Hepatology, Nutrition, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Program of Translational Medicine, Research institute, Hospital for Sick Children, Toronto, Canada
| | - W W Grody
- Departments of Pathology & Laboratory Medicine, Pediatrics, and Human Genetics, UCLA School of Medicine, Los Angeles, California 90095-1732, USA
| | - M Jain
- Northwestern University Feinberg School of Medicine, Pulmonary Critical Care, Chicago, Illinois, United States
| | - A Jung
- University Children`s Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - E Kerem
- Department of Pediatrics and CF Center, Hadassah Hebrew University medical Center, Jerusalem, Israel
| | - K S Raraigh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - M D Waller
- Department of Adult Cystic Fibrosis and Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; Centre for Human & Applied Physiological Sciences, King's College London, London, United Kingdom
| | - K W Southern
- Department of Women's and Children's Health, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK
| | - C Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| |
Collapse
|
5
|
Guan WJ, Hu PC, Martinez-Garcia MA. The transcriptomic landscape of diffuse radiological bronchiectasis. Eur Respir J 2023; 61:61/1/2201733. [PMID: 36707228 DOI: 10.1183/13993003.01733-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Pei-Cun Hu
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Miguel Angel Martinez-Garcia
- Pneumology Department, University and Politechnic La Fe Hospital, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias - CIBERES - Instituto de Salud Carlos III, Madrid, Spain
- Senior author
| |
Collapse
|
6
|
Zhang RL, Pan CX, Tang CL, Cen LJ, Zhang XX, Huang Y, Lin ZH, Li HM, Zhang XF, Wang L, Guan WJ, Wang DY. Motile Ciliary Disorders of the Nasal Epithelium in Adults With Bronchiectasis. Chest 2022; 163:1038-1050. [PMID: 36435264 DOI: 10.1016/j.chest.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Motile ciliary disorder (MCD) has been implicated in chronic inflammatory airway diseases such as asthma and COPD. RESEARCH QUESTION What are the characteristics of MCD of the nasal epithelium and its association with disease severity and inflammatory endotypes in adults with bronchiectasis? STUDY DESIGNS AND METHODS In this observational study, we recruited 167 patients with bronchiectasis and 39 healthy control participants who underwent brushing of the nasal epithelium. A subgroup of patients underwent bronchoscopy for bronchial epithelium sampling (n = 13), elective surgery for bronchial epithelium biopsy (n = 18), and blood sampling for next-generation sequencing (n = 37). We characterized systemic and airway inflammatory endotypes in bronchiectasis. We conducted immunofluorescence assays to profile ultrastructural (dynein axonemal heavy chain 5 [DNAH5], dynein intermediate chain 1 [DNAI1], radial spoke head protein 9 [RSPH9]) and ciliogenesis marker expression (ezrin). RESULTS MCD was present in 89.8% of patients with bronchiectasis, 67.6% showed secondary MCD, and 16.2% showed primary plus secondary MCD. Compared with healthy control participants, patients with bronchiectasis yielded abnormal staining patterns of DNAH5, DNAI1, and RSPH9 (but not ezrin) that were more prominent in moderate to severe bronchiectasis. MCD pattern scores largely were consistent between upper and lower airways and between large-to-medium and small airways in bronchiectasis. Coexisting nasal diseases and asthma did not confound nasal ciliary ultrastructural marker expression significantly. The propensity of MCD was unaffected by the airway or systemic inflammatory endotypes. MCD, particularly an ultrastructural abnormality, was notable in patients with mild bronchiectasis who showed blood or sputum eosinophilia. INTERPRETATION Nasal ciliary markers profiling provides complimentary information to clinical endotyping of bronchiectasis.
Collapse
Affiliation(s)
- Ri-Lan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Cui-Xia Pan
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Chun-Li Tang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiao-Xian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, the Department of Geriatrics, Guangzhou, Guangdong, China
| | - Zhen-Hong Lin
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Hui-Min Li
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiao-Fen Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; National Key Clinical Specialty, Guangzhou First People's Hospital, South China University of Technology, the Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; National Clinical Research Center for Respiratory Disease, the Department of Thoracic Surgery, Guangzhou, Guangdong, China.
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
7
|
Wang L, Zha P, Wang Y, Kong Y, Su Y, Dai L, Wang Y. The Value of Macrogene Second-Generation Sequencing in the Diagnosis, Guidance of Drug Use, and Efficacy Monitoring of Infectious Pneumonia in Premature Infants. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4398614. [PMID: 36277011 PMCID: PMC9581658 DOI: 10.1155/2022/4398614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Objective A group-controlled trial was conducted to explore the value of macrogene second-generation sequencing in the diagnosis, drug use, and efficacy monitoring of infectious pneumonia in premature infants. Methods One hundred and thirty-eight premature infants with suspected infectious pneumonia treated in our hospital from March 2019 to June 2022 were selected as subjects. All patients underwent deep phlegm extraction and were randomly divided into two groups. 69 cases of control group were treated with general bacterial and fungal culture. The lavage fluid of the remaining 69 cases of observation group were detected by metagenomic next-generation sequencing (mNGS). The number of diagnosed preterm infants with infectious pneumonia was compared between the two groups, and the diagnostic value of the two methods was analyzed by the receiver operator characteristic (ROC) curve. Then, the differences in clinical efficacy, antimicrobial neonatal intensive care unit (NICU) use time, antimicrobial adjustment frequency, NICU stay time, hospital stay, and serum inflammatory factors were compared between the two groups. Results The positive rate of mNGS pathogen detection in the lavage fluid of the observation group was 92.75% (64/69). The positive rate of the culture of the lavage fluid of the control group was 52.17% (36/69). The ROC curve analysis showed that the ROC AUC of traditional culture was 0.752 (95%CI = 0.610-0.894), and that of mNCS was 0.934 (95%CI = 0.854-0.999). In the observation group, there were 35 cases of bacterial infection, 20 cases of fungi, 4 cases of virus, and 5 cases of Chlamydia psittaci. In the control group, 26 cases of bacterial infection and 9 cases of fungi were detected; but viruses and other mycoplasmas could not be detected. After 2 weeks of treatment, the effective rate of the observation group was 95.31%, while that of the control group was 69.44%. The NICU use time, adjustment frequency, NICU stay time, and hospitalization time of antibiotics in the observation group were significantly less than those in the control group, and the difference was statistically significant (P < 0.05). After treatment, the levels of serum interleukin-6 (IL-6), procalcitonin (PCT), and hypersensitivity-C-reactive protein (hs-CRP) in observation group were significantly higher than those in control group, and the difference was statistically significant (P < 0.05). Conclusion mNGS can improve the efficiency of clinical diagnosis of infectious pneumonia in premature infants, effectively improve the detection rate of pathogens and the clinical efficacy of premature infants. At the same time, it can also assist the clinical efficacy monitoring and adjust the treatment plan at any time.
Collapse
Affiliation(s)
- LiLi Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Ping Zha
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - YuJuan Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Ying Kong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Yu Su
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - LiYing Dai
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Yang Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| |
Collapse
|
8
|
Tan MQ, Huang WJ, Lan FH, Xu YJ, Zheng MY, Tang Y. Genetic mutation analysis of 22 patients with congenital absence of vas deferens: A single-center study†. Biol Reprod 2021; 106:108-117. [PMID: 34673937 DOI: 10.1093/biolre/ioab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital absence of the vas deferens (CAVD), a congenital malformation of the male reproductive system, causes obstructive azoospermia and male infertility. Currently, the cystic fibrosis transmembrane conductance regulator (CFTR) has been recognized as the main pathogenic gene in CAVD, with some other genes, such as adhesion G-protein coupled receptor G2 (ADGRG2), solute carrier family 9 isoform 3 (SLC9A3), sodium channel epithelial 1 subunit beta (SCNN1B), and carbonic anhydrase 12 (CA12) being candidate genes in the pathogenesis of CAVD. However, the frequency and spectrum of these mutations, as well as the pathogenic mechanisms of CAVD, have not been fully investigated. Here, we sequenced all genes with potentially pathogenic mutations using next-generation sequencing and verified all identified variants by Sanger sequencing. Further bioinformatic analysis was performed to predict the pathogenicity of mutations. We described the distribution of the p.V470M, poly-T, and TG-repeat CFTR polymorphisms, and identified novel missense mutations in the CFTR and SLC9A3 genes, respectively. Taken together, we identified mutations in the CFTR, ADGRG2, SLC9A3, SCNN1B, and CA12 genes in 22 patients with CAVD, thus broadening the genetic spectrum of Chinese patients with CAVD.
Collapse
Affiliation(s)
- Mao-Qing Tan
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.,Department of Clinical Laboratory, Dongfang Hospital Affiliated to Xiamen University, Fuzhou, Fujian, 350025, P.R. China
| | - Wu-Jian Huang
- Center for Reproductive Medicine, 900TH Hospital of Joint Logistic Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Feng-Hua Lan
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Yong-Jun Xu
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Mei-Yu Zheng
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Ying Tang
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| |
Collapse
|
9
|
Amati F, Simonetta E, Pilocane T, Gramegna A, Goeminne P, Oriano M, Pascual-Guardia S, Mantero M, Voza A, Santambrogio M, Blasi F, Aliberti S. Diagnosis and Initial Investigation of Bronchiectasis. Semin Respir Crit Care Med 2021; 42:513-524. [PMID: 34261176 DOI: 10.1055/s-0041-1730892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bronchiectasis refers to both the name of a disease and a single radiological appearance that may, or may not, be associated with disease. As chronic respiratory disease, bronchiectasis is characterized by a variable range of signs and symptoms that may overlap with other chronic respiratory conditions. The proper identification of bronchiectasis as a disease in both primary and secondary care is of paramount importance. However, a standardized definition of radiologically and clinically significant bronchiectasis is still missing. Disease heterogeneity is a hallmark of bronchiectasis and applies not only to radiological features and clinical manifestations but also to other aspects of the disease, including the etiological and microbiological diagnosis as well as the evaluation of pulmonary function. Although the guidelines suggest a "minimum bundle" of tests, the diagnostic approach to bronchiectasis is challenging and may be driven by the "treatable traits" approach based on endotypes and biological characteristics. A broad spectrum of diagnostic tests could be used to investigate the etiology of bronchiectasis as well as other pulmonary, extrapulmonary, and environmental traits. Individualizing bronchiectasis workup according to the site of care (e.g., primary, secondary, and tertiary care) could help optimize patients' management and reduce healthcare costs.
Collapse
Affiliation(s)
- Francesco Amati
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Simonetta
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Pilocane
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Pieter Goeminne
- Department of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergi Pascual-Guardia
- Department of Respiratory Medicine, Hospital del Mar (PSMAR)-IMIM, Barcelona, Spain.,School of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,CIBER, Área de Enfermedades Respiratorias (CIBERES), ISCIII, Spain
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Voza
- Emergency Department, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Martina Santambrogio
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Xia H, Huang X, Deng S, Xu H, Yang Y, Liu X, Yuan L, Deng H. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS One 2021; 16:e0252786. [PMID: 34133440 PMCID: PMC8208527 DOI: 10.1371/journal.pone.0252786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Heterotaxy (HTX), a condition characterized by internal organs not being arranged as expected relative to each other and to the left-right axis, is often accompanied with congenital heart disease (CHD). The purpose was to detect the pathogenic variants in a Chinese family with HTX and CHD. A non-consanguineous Han Chinese family with HTX and CHD, and 200 unrelated healthy subjects were enlisted. Exome sequencing and Sanger sequencing were applied to identify the genetic basis of the HTX family. Compound heterozygous variants, c.3426-1G>A and c.4306C>T (p.(Arg1436Trp)), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified in the proband via exome sequencing and further confirmed by Sanger sequencing. Neither c.3426-1G>A nor c.4306C>T variant in the DNAH11 gene was detected in 200 healthy controls. The DNAH11 c.3426-1G>A variant was predicted as altering the acceptor splice site and most likely affecting splicing. The DNAH11 c.4306C>T variant was predicted to be damaging, which may reduce the phenotype severity. The compound heterozygous variants, c.3426-1G>A and c.4306C>T, in the DNAH11 gene might be the pathogenic alterations resulting in HTX and CHD in this family. These findings broaden the variant spectrum of the DNAH11 gene and increase knowledge used in genetic counseling for the HTX family.
Collapse
Affiliation(s)
- Hong Xia
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Liu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Shteinberg M, Flume PA, Chalmers JD. Is bronchiectasis really a disease? Eur Respir Rev 2020; 29:29/155/190051. [PMID: 31996354 DOI: 10.1183/16000617.0051-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 11/05/2022] Open
Abstract
The definition of a disease requires that distinguishing signs and symptoms are present that are common, and that the constellation of signs and symptoms differentiate the condition from other causes. In bronchiectasis, anatomical changes, airways inflammation and airway infection are the distinguishing features that are common to this disease. However, bronchiectasis is a heterogenous disease: signs and symptoms are shared with other airway diseases, there are multiple aetiologies and certain phenotypes of bronchiectasis have distinct clinical and laboratory features that are not common to all people with bronchiectasis. Furthermore, response to therapeutic interventions in clinical trials is not uniform. The concept of bronchiectasis as a treatable trait has been suggested, but this may be too restrictive in view of the heterogeneity of bronchiectasis. It is our opinion that bronchiectasis should be defined as a disease in its own right, but one that shares several pathophysiological features and "treatable traits" with other airway diseases. These traits define the large heterogeneity in the pathogenesis and clinical features and suggest a more targeted approach to therapy.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel .,Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Patrick A Flume
- Dept of Medicine and Dept of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
12
|
Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204. [PMID: 32292784 PMCID: PMC7118214 DOI: 10.3389/fcell.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Collapse
Affiliation(s)
- Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sanna Katriina Toppila-Salmi
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Luukkainen
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland
| | - Robert Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Peng Y, Xu AR, Chen SY, Huang Y, Han XR, Guan WJ, Wang DY, Zhong NS. Aberrant Epithelial Cell Proliferation in Peripheral Airways in Bronchiectasis. Front Cell Dev Biol 2020; 8:88. [PMID: 32154248 PMCID: PMC7044270 DOI: 10.3389/fcell.2020.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Dilation of bronchi and bronchioles caused by destruction and excessive epithelial remodeling is a characteristic feature of bronchiectasis. It is not known how epithelial progenitor cells contribute to these pathologic conditions in peripheral airways (bronchioles) in bronchiectasis. We aimed to explore the expression levels of signature airway progenitor cells in the dilated bronchioles in patients with bronchiectasis. We obtained the surgically resected peripheral lung tissues from 43 patients with bronchiectasis and 33 control subjects. Immunostaining was performed to determine the expression patterns of thyroid transcription factor-1 (TTF-1, for labeling progenitor cells in distal airways), P63 (basal cells), club cell 10 kDa protein (CC10, club cells), and surfactant protein C (SPC, alveolar type II epithelial cells) in epithelium or sub-epithelium. Here, we reported significantly lower percentage of TTF-1+ cells and CC10+ cells, and higher percentage of P63+ cells within the epithelium of dilated bronchioles compared with control bronchioles. In airway sub-epithelium of the dilated bronchioles, epithelial hyperplasia with disarrangement of TTF-1+ cells yielded cuboidal (100%) and columnar (93.0%) type among bronchiectasis patients. Most progenitor cell markers co-localized with TTF-1. The median (the 1st, 3rd quartile) percentage of P63+TTF-1+, CC10+TTF-1+, and SPC+TTF-1+ cells was 16.0% (8.9, 24.0%), 14.5% (7.1, 20.8%), and 52% (40.3, 64.4%), respectively. For cuboidal epithelial hyperplasia, 91.0% (86.5, 94.0%) of areas co-stained with SPC and TTF-1. Columnar epithelial hyperplasia was characterized by TTF-1 co-staining with P63+TTF-1+ and CC10+TTF-1+ cells. Taken together, aberrant proliferation of airway progenitor cells in both epithelium and sub-epithelium are implicated in bronchiectasis.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Han
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Bush A, Floto RA. Pathophysiology, causes and genetics of paediatric and adult bronchiectasis. Respirology 2019; 24:1053-1062. [PMID: 30801930 DOI: 10.1111/resp.13509] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Bronchiectasis has historically been considered to be irreversible dilatation of the airways, but with modern imaging techniques it has been proposed that 'irreversible' be dropped from the definition. The upper limit of normal for the ratio of airway to arterial development increases with age, and a developmental perspective is essential. Bronchiectasis (and persistent bacterial bronchitis, PBB) is a descriptive term and not a diagnosis, and should be the start not the end of the patient's diagnostic journey. PBB, characterized by airway infection and neutrophilic inflammation but without significant airway dilatation may be a precursor of bronchiectasis, and there are many commonalities in the microbiology and the pathology, which are reviewed in this article. A high index of suspicion is essential, and a history of chronic wet or productive cough for more than 4-8 weeks should prompt investigation. There are numerous underlying causes of bronchiectasis, although in many cases no cause is found. Causes include post-infectious, especially after tuberculosis, adenoviral or pertussis infection; aspiration syndromes; defects in host defence, which may solely affect the airways (cystic fibrosis, not considered in this review, and primary ciliary dyskinesia); and primary ciliary dyskinesia or be systemic, such as common variable immunodeficiency; genetic syndromes; and anatomical defects such as intraluminal airway obstruction (e.g. foreign body), intramural obstruction (e.g. complete cartilage rings) and external airway compression (e.g. by tuberculous lymph nodes). Identification of the underlying cause is important, because some of these conditions have specific treatments and others genetic implications for the family.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatrics, Imperial College, London, UK.,Department of Paediatric Respirology, National Heart and Lung Institute, London, UK.,Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - R Andres Floto
- Department of Respiratory Biology, University of Cambridge, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|