1
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
2
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Shen WX, Li GH, Li YJ, Zhang PF, Yu JX, Shang D, Wang QS. Prognostic Significance of Tumor Mutation Burden among Patients with Non-small Cell Lung Cancer Who Received Platinum-based Adjuvant Chemotherapy: An Exploratory Study. J Cancer Prev 2023; 28:175-184. [PMID: 38205359 PMCID: PMC10774481 DOI: 10.15430/jcp.2023.28.4.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to investigate the prognostic significance of tumor mutation burden (TMB) among patients with non-small cell lung cancer (NSCLC) who received platinum-based adjuvant chemotherapy. Tumor tissue specimens after surgical resection were collected for DNA extraction. Somatic mutation detection and TMB analysis were conducted using next-generation sequencing (NGS). Recurrence status of the patients was assessed in the hospital during the adjuvant chemotherapy period, and long-term survival data of patients were obtained by telephone follow-up. Univariate analysis between TMB status and prognosis was carried out by survival analysis. A retrospective review of 78 patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy showed a median disease-free survival of 3.6 years and median overall survival (OS) of 5.3 years. NGS analysis exhibited that the most common mutated somatic genes among the 78 patients were tumor suppressor protein p53 (TP53), epidermal growth factor receptor, low-density lipoprotein receptor related protein 1B, DNA methyltransferase 3 alpha and FAT atypical cadherin 3, and their prevalence was 56.4%, 48.7%, 37.2%, 30.7%, and 25.6%, respectively. TMB status was divided into TMB-L (≤ 4.5/Mb) and TMB-H (> 4.5/Mb) based on the median TMB threshold. Relevance of TMB to prognosis suggested that the median OS of patients with TMB-L was significantly longer than that of patients with TMB-H (NR vs. 4.6, P = 0.014). Higher TMB status conferred a worse implication on OS among patients with non-squamous NSCLC who received platinum-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Wei-Xi Shen
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guang-Hua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Jia Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Xing Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Shang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiu-Shi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Parra ER, Ilié M, Wistuba II, Hofman P. Quantitative multiplexed imaging technologies for single-cell analysis to assess predictive markers for immunotherapy in thoracic immuno-oncology: promises and challenges. Br J Cancer 2023; 129:1417-1431. [PMID: 37391504 PMCID: PMC10628288 DOI: 10.1038/s41416-023-02318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The past decade has witnessed a revolution in cancer treatment by the shift from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular the immune-checkpoint inhibitors (ICIs). These immunotherapies selectively release the host immune system against the tumour and have shown unprecedented durable remission for patients with cancers that were thought incurable such as advanced non-small cell lung cancer (aNSCLC). The prediction of therapy response is based since the first anti-PD-1/PD-L1 molecules FDA and EMA approvals on the level of PD-L1 tumour cells expression evaluated by immunohistochemistry, and recently more or less on tumour mutation burden in the USA. However, not all aNSCLC patients benefit from immunotherapy equally, since only around 30% of them received ICIs and among them 30% have an initial response to these treatments. Conversely, a few aNSCLC patients could have an efficacy ICIs response despite low PD-L1 tumour cells expression. In this context, there is an urgent need to look for additional robust predictive markers for ICIs efficacy in thoracic oncology. Understanding of the mechanisms that enable cancer cells to adapt to and eventually overcome therapy and identifying such mechanisms can help circumvent resistance and improve treatment. However, more than a unique universal marker, the evaluation of several molecules in the tumour at the same time, particularly by using multiplex immunostaining is a promising open room to optimise the selection of patients who benefit from ICIs. Therefore, urgent further efforts are needed to optimise to individualise immunotherapy based on both patient-specific and tumour-specific characteristics. This review aims to rethink the role of multiplex immunostaining in immuno-thoracic oncology, with the current advantages and limitations in the near-daily practice use.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France.
| |
Collapse
|
5
|
Nikoo M, Rabiee F, Mohebbi H, Eghbalifard N, Rajabi H, Yazdani Y, Sakhaei D, Khosravifarsani M, Akhavan-Sigari R. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. Int Immunopharmacol 2023; 117:109881. [PMID: 37012882 DOI: 10.1016/j.intimp.2023.109881] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy, yielding significant antitumor responses across multiple cancer types. Combination ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies outperforms either antibody alone in terms of clinical efficacy. As a consequence, the U.S. Food and Drug Administration (FDA) approved ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) as the first-ever approved therapies for combined ICI in patients with metastatic melanoma. Despite the success of ICIs, treatment with checkpoint inhibitor combinations poses significant clinical challenges, such as increased rates of immune-related adverse events (irAEs) and drug resistance. Thus, identifying optimal prognostic biomarkers could help to monitor the safety and efficacy of ICIs and identify patients who may benefit the most from these treatments. In this review, we will first go over the fundamentals of the CTLA-4 and PD-1 pathways, as well as the mechanisms of ICI resistance. The results of clinical findings that evaluated the combination of ipilimumab and nivolumab are then summarized to support future research in the field of combination therapy. Finally, the irAEs associated with combined ICI therapy, as well as the underlying biomarkers involved in their management, are discussed.
Collapse
|
6
|
Yang Y, Liu H, Chen Y, Xiao N, Zheng Z, Liu H, Wan J. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis 2023; 14:230. [PMID: 37002211 PMCID: PMC10066332 DOI: 10.1038/s41419-023-05757-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most threatening malignancies to human health and life. In most cases, patients with NSCLC are already at an advanced stage when they are diagnosed. In recent years, lung cancer has made great progress in precision therapy, but the efficacy of immunotherapy is unstable, and its response rate varies from patient to patient. Several biomarkers have been proposed to predict the outcomes of immunotherapy, such as programmed cell death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). Nevertheless, the detection assays are invasive and demanding on tumor tissue. To effectively predict the outcomes of immunotherapy, novel biomarkers are needed to improve the performance of conventional biomarkers. Liquid biopsy is to capture and detect circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes in body fluids, such as blood, saliva, urine, pleural fluid and cerebrospinal fluid as samples from patients, so as to make analysis and diagnosis of cancer and other diseases. The application of liquid biopsy provides a new possible solution, as it has several advantages such as non-invasive, real-time dynamic monitoring, and overcoming tumor heterogeneity. Liquid biopsy has shown predictive value in immunotherapy, significantly improving the precision treatment of lung cancer patients. Herein, we review the application of liquid biopsy in predicting the outcomes of immunotherapy in NSCLC patients, and discuss the challenges and future directions in this field.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyang Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Prete AA, Manca P, Messina M, Formica V, Frassineti GL, Zampino MG, Corsi DC, Orciuolo C, Prisciandaro M, Bergamo F, Angerilli V, Scartozzi M, Casagrande M, Masi G, Ronzoni M, Morano F, Vettore V, Salmaso R, Rasola C, Maddalena G, Del Bianco P, Milione M, Cremolini C, Fassan M, Pietrantonio F, Lonardi S. Extensive molecular profiling of squamous cell anal carcinoma in a phase 2 trial population: Translational analyses of the "CARACAS" study. Eur J Cancer 2023; 182:87-97. [PMID: 36753836 DOI: 10.1016/j.ejca.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Molecular characteristics of squamous cell anal carcinoma (SCAC) are poorly explored. Immune checkpoint inhibitors showed limited activity in phase I/II trials, but predictive and prognostic biomarkers are lacking. PATIENTS AND METHODS In the phase II randomised trial CARACAS (NCT03944252), avelumab alone (Arm A) or with cetuximab (Arm B) was tested in pre-treated advanced SCAC , with overall response rate being the primary end-point. On pre-treatment tumour tissue samples, we assessed Human papillomavirus status, programmed-death ligand 1 (PD-L1) expression, mismatch repair proteins expression, tumour mutational burden (TMB) and comprehensive genomic profiling by FoundationOne CDx. Tumour-infiltrating lymphocytes were characterised on haematoxylin-eosine-stained samples. Primary objective was to describe response to immunotherapy in the CARACAS trial population according to molecular and histological characteristics. Secondary objectives were to assess progression-free survival (PFS) and overall survival (OS) according to molecular biomarkers. RESULTS High PD-L1 (>40 with combined positive score) was significantly more frequent in patients with disease control (p = 0.0109). High TMB (>10 mutations per megabase) was related to better OS (hazard ratio (HR) = 0.09; 95%confidence interval (CI) 0.01-0.68; p = 0.019) and PFS (HR = 0.44; 95%CI = 0.15-1.27; p = 0.129). High expression of PD-L1 conferred longer OS (HR = 0.46; 95%CI = 0.19-1.08; p = 0.075) and PFS (HR = 0.42; 95%CI = 0.20-0.92; p = 0.03). Neither OS (HR = 1.30; 95%CI = 0.72-2.36; p = 0.39) or PFS (HR = 1.31; 95%CI = 0.74-2.31; p = 0.357) was affected by high (>1.2) Tumour-infiltrating lymphocytes count. High TMB and PD-L1identified patients were with significantly better OS (HR = 0.33; 95%CI = 0.13-0.81; p = 0.015) and PFS (HR = 0.48; 95%CI = 0.23-1.00; p = 0.015). CONCLUSIONS To our knowledge, TranslaCARACAS is the first study to document prognostic role of TMB and PD-L1 in advanced SCAC patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alessandra A Prete
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Manca
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Marco Messina
- Oncologia, Fondazione Istituto G. Giglio, Cefalù, Italy
| | | | - Giovanni L Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumouri "Dino Amadori" (IRST), Meldola, Italy
| | - Maria G Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology - IRCCS, Milan, Italy
| | - Domenico C Corsi
- Medical Oncology Unit Ospedale San Giovanni Calibita Fatebenefratelli, Rome, Italy
| | - Corrado Orciuolo
- Oncology Unit, Department of Radiology, Oncology and Human Pathology, Sapienza University of Rome, Italy
| | | | - Francesca Bergamo
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua Padua, Italy
| | | | | | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Monica Ronzoni
- Oncologia Medica, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Morano
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Valentina Vettore
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roberta Salmaso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua Padua, Italy
| | - Cosimo Rasola
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy
| | - Giulia Maddalena
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Massimo Milione
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumouri, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua Padua, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Sara Lonardi
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
9
|
Garassino MC, Gadgeel S, Novello S, Halmos B, Felip E, Speranza G, Hui R, Garon EB, Horinouchi H, Sugawara S, Rodriguez-Abreu D, Reck M, Cristescu R, Aurora-Garg D, Loboda A, Lunceford J, Kobie J, Ayers M, Piperdi B, Pietanza MC, Paz-Ares L. Associations of Tissue Tumor Mutational Burden and Mutational Status With Clinical Outcomes With Pembrolizumab Plus Chemotherapy Versus Chemotherapy For Metastatic NSCLC. JTO Clin Res Rep 2023; 4:100431. [PMID: 36793385 PMCID: PMC9923193 DOI: 10.1016/j.jtocrr.2022.100431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction We evaluated tissue tumor mutational burden (tTMB) and mutations in STK11, KEAP1, and KRAS as biomarkers for outcomes with pembrolizumab plus platinum-based chemotherapy (pembrolizumab-combination) for NSCLC among patients in the phase 3 KEYNOTE-189 (ClinicalTrials.gov, NCT02578680; nonsquamous) and KEYNOTE-407 (ClinicalTrials.gov, NCT02775435; squamous) trials. Methods This retrospective exploratory analysis evaluated prevalence of high tTMB and STK11, KEAP1, and KRAS mutations in patients enrolled in KEYNOTE-189 and KEYNOTE-407 and the relationship between these potential biomarkers and clinical outcomes. tTMB and STK11, KEAP1, and KRAS mutation status was assessed using whole-exome sequencing in patients with available tumor and matched normal DNA. The clinical utility of tTMB was assessed using a prespecified cutpoint of 175 mutations/exome. Results Among patients with evaluable data from whole-exome sequencing for evaluation of tTMB (KEYNOTE-189, n = 293; KEYNOTE-407, n = 312) and matched normal DNA, no association was found between continuous tTMB score and overall survival (OS) or progression-free survival for pembrolizumab-combination (Wald test, one-sided p > 0.05) or placebo-combination (Wald test, two-sided p > 0.05) in patients with squamous or nonsquamous histology. Pembrolizumab-combination improved outcomes for patients with tTMB greater than or equal to 175 compared with tTMB less than 175 mutations/exome in KEYNOTE-189 (OS, hazard ratio = 0.64 [95% confidence interval (CI): 0.38‒1.07] and 0.64 [95% CI: 0.42‒0.97], respectively) and KEYNOTE-407 (OS, hazard ratio = 0.74 [95% CI: 0.50‒1.08 and 0.86 [95% CI: 0.57‒1.28], respectively) versus placebo-combination. Treatment outcomes were similar regardless of KEAP1, STK11, or KRAS mutation status. Conclusions These findings support pembrolizumab-combination as first-line treatment in patients with metastatic NSCLC and do not suggest the utility of tTMB, STK11, KEAP1, or KRAS mutation status as a biomarker for this regimen.
Collapse
Affiliation(s)
- Marina C. Garassino
- Section of Hematology/Oncology, Thoracic Oncology program, University of Chicago, Chicago, Illinois, and IRCCS Istituto Nazionale dei Tumori, Milano
| | - Shirish Gadgeel
- Division of Hematology/Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Health System, Detroit, Michigan
| | - Silvia Novello
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Balazs Halmos
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Enriqueta Felip
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University, Barcelona, Spain
| | - Giovanna Speranza
- Centre integré de cancérologie de la Montérégie, Université de Sherbrooke, Greenfield Park, Quebec, Canada
| | - Rina Hui
- Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Edward B. Garon
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Delvys Rodriguez-Abreu
- Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Martin Reck
- LungenClinic, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | | | | | | | | | | | | | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Universidad Complutense and Ciberonc, Madrid, Spain
| |
Collapse
|
10
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
11
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
12
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
13
|
Sun W, Zhao F, Hu T, Wu Z, Xu Y, Dong Y, Zheng B, Wang C, Yan W, Zhu X, Wu J, McKay MJ, Arozarena I, Alos L, Teixido C, Chen Y. Oncogenic alterations reveal key strategies for precision oncology in melanoma treatment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1246. [PMID: 36544693 PMCID: PMC9761125 DOI: 10.21037/atm-22-5346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Background Molecular profiling with next-generation sequencing (NGS) has been applied in multiple solid tumors, including melanomas, to identify potential drug targets. However, the association between clinical outcomes and the molecular alterations has not yet been fully clarified. Methods A total of 108 patients with melanoma were included in this study, 95 of whom had both sequencing data and clinical outcomes were collected. We analyzed the genetic alterations of 108 malignant melanoma patients using the OncoCare panel, which covers 559 genes. Results A model was also established to predict side effects through a combination analysis of clinical data and somatic variants, yielding an area under the receiver operating characteristic curve (AUROC) score of 0.8. We also identified epidermal growth factor receptor (EGFR) mutation was excellent predictor for progression-free survival (PFS) for patient who received immunotherapy (log-rank P=0.01), while tumor mutation burden (TMB) was found to not be significantly associated with PFS (log-rank P=0.87). Combining clinical features with genetic analysis, we found that patients carrying both DNA POLD1/ALOX12B or POLD1/PTPRT mutations had a significantly lower survival rate. Conclusions Overall, these results demonstrate the benefits of applying NGS clinical panels and shed light on future directions of personalized therapeutics for the treatment of melanoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Tu Hu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Dong
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China;,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | - Michael J. McKay
- Department of Radiation Oncology, Northern Cancer Service, Burnie, Australia
| | - Imanol Arozarena
- Navarrabiomed-Fundación Miguel Servet-Idisna, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Nanomedicine-Based Gene Delivery for a Truncated Tumor Suppressor RB94 Promotes Lung Cancer Immunity. Cancers (Basel) 2022; 14:cancers14205092. [DOI: 10.3390/cancers14205092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Because lung cancer remains the most common and lethal of cancers, novel therapeutic approaches are urgently needed. RB94 is a truncated form of retinoblastoma tumor suppressor protein with elevated anti-tumor efficacy. Our investigational nanomedicine (termed scL-RB94) is a tumor-targeted liposomal formulation of a plasmid containing the gene encoding RB94. In this research, we studied anti-tumor and immune modulation activities of scL-RB94 nanocomplex in preclinical models of human non-small cell lung cancer (NSCLC). Systemic treatment with scL-RB94 of mice bearing human NSCLC tumors significantly inhibited tumor growth by lowering proliferation and increasing apoptosis of tumor cells in vivo. scL-RB94 treatment also boosted anti-tumor immune responses by upregulating immune recognition molecules and recruiting innate immune cells such as natural killer (NK) cells. Antibody-mediated depletion of NK cells blunted the anti-tumor activity of scL-RB94, suggesting that NK cells were crucial for the observed anti-tumor activity in these xenograft models. Treatment with scL-RB94 also altered the polarization of tumor-associated macrophages by reducing immune-suppressive M2 macrophages to lower immune suppression in the tumor microenvironment. Collectively, our data suggest that the efficacy of scL-RB94 against NSCLC is due to an induction of tumor cell death as well as enhancement of innate anti-tumor immunity.
Collapse
|
15
|
Wu F, Chen M, Li N, Wu X, Huang W, Chen X, Chen K, Wang L, Liu J. Tumor mutational burden in non-immunotherapy patients with heavily pretreated metastatic breast cancer: long-term outcomes from a single institution. J Chemother 2022:1-9. [PMID: 36000459 DOI: 10.1080/1120009x.2022.2107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Patients with heavily pretreated (≥3rd-line treatment) metastatic breast cancer (MBC) had poor outcomes and lack prognostic biomarkers. Tumor mutational burden (TMB) was a prognostic biomarker for immunotherapy, but is not well defined in non-immunotherapy. Forty-nine heavily pretreated MBC not received immunotherapy were enrolled between March 2016 and September 2018. TMB of metastatic tumor tissue was evaluated by targeted next-generation sequencing of a 247-genes panel. CBRs (clinical benefit rates) were 47.7% (9 months), 36.2% (12 months) in high TMB patients, higher than 16.1% (9 months), 8.1% (12 months) in low TMB patients, respectively. After a median follow-up of 38 months, patients with high TMB had a longer mPFS (median progress-free survival) compared to low TMB patients in 3rd-line treatment group (13.5 versus 7 months, HR 0.32, p = 0.019) but not in >3rd-line treatment group. Cox regression showed TMB and line of treatment were the two independent prognostic factors for prolonged mPFS in heavily pretreated MBC, with a HR of 0.34 (p = 0.009) for high TMB and 0.37 (p = 0.013) for 3rd-line treatment. In luminal subtype, mPFS was longer with endocrine therapy (ET) alone than with endocrine therapy + chemotherapy (ET + CT) in high TMB cohort (p = 0.037) but shorter mPFS with ET alone than with ET + CT in low TMB cohort (p = 0.047). High TMB and line of treatment are two independent prognostic factors for prolonged mPFS in heavily pretreated MBC patients. TMB may be a predictive biomarker of efficacy with ET alone or ET + CT in luminal subtype.
Collapse
Affiliation(s)
- Fan Wu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mulan Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Nani Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiufeng Wu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Weiwei Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xinhua Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Kan Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Lili Wang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jian Liu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
16
|
Matched Paired Primary and Recurrent Meningiomas Points to Cell-Death Program Contributions to Genomic and Epigenomic Instability along Tumor Progression. Cancers (Basel) 2022; 14:cancers14164008. [PMID: 36011000 PMCID: PMC9406329 DOI: 10.3390/cancers14164008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Meningioma (MN) is an important cause of disability, and predictive tools for estimating the risk of recurrence are still scarce. The need for objective and cost-effective techniques addressed to this purpose is well known. In this study, we present methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a friendly method for deepening the understanding of the mechanisms underlying meningioma progression. A large follow-up allowed us to obtain 50 samples, which included the primary tumor of 20 patients in which half of them are suffering one recurrence and the other half are suffering more than one. We histologically characterized the samples and performed MS-MLPA assays validated by FISH to assess their copy number alterations (CNA) and epigenetic status. Interestingly, we determined the increase in tumor instability with higher values of CNA during the progression accompanied by an increase in epigenetic damage. We also found a loss of HIC1 and the hypermethylation of CDKN2B and PTEN as independent prognostic markers. Comparison between grade 1 and higher primary MN's self-evolution pointed to a central role of GSTP1 in the first stages of the disease. Finally, a high rate of alterations in genes that are related to apoptosis and autophagy, such as DAPK1, PARK2, BCL2, FHIT, or VHL, underlines an important influence on cell-death programs through different pathways.
Collapse
|
17
|
Cuppens K, Baas P, Geerdens E, Cruys B, Froyen G, Decoster L, Thomeer M, Maes B. HLA-I diversity and tumor mutational burden by comprehensive next-generation sequencing as predictive biomarkers for the treatment of non-small cell lung cancer with PD-(L)1 inhibitors. Lung Cancer 2022; 170:1-10. [DOI: 10.1016/j.lungcan.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
18
|
Schalkamp AK, Rahman N, Monzón-Sandoval J, Sandor C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022; 15:dmm049376. [PMID: 35647913 PMCID: PMC9178512 DOI: 10.1242/dmm.049376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major challenge in medical genomics is to understand why individuals with the same disorder have different clinical symptoms and why those who carry the same mutation may be affected by different disorders. In every complex disorder, identifying the contribution of different genetic and non-genetic risk factors is a key obstacle to understanding disease mechanisms. Genetic studies rely on precise phenotypes and are unable to uncover the genetic contributions to a disorder when phenotypes are imprecise. To address this challenge, deeply phenotyped cohorts have been developed for which detailed, fine-grained data have been collected. These cohorts help us to investigate the underlying biological pathways and risk factors to identify treatment targets, and thus to advance precision medicine. The neurodegenerative disorder Parkinson's disease has a diverse phenotypical presentation and modest heritability, and its underlying disease mechanisms are still being debated. As such, considerable efforts have been made to develop deeply phenotyped cohorts for this disorder. Here, we focus on Parkinson's disease and explore how deep phenotyping can help address the challenges raised by genetic and phenotypic heterogeneity. We also discuss recent methods for data collection and computation, as well as methodological challenges that have to be overcome.
Collapse
Affiliation(s)
| | | | | | - Cynthia Sandor
- UK Dementia Research Institute at Cardiff University,Division of Psychological Medicine and Clinical Neuroscience, Haydn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
19
|
Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29:3044-3060. [PMID: 35621637 PMCID: PMC9139602 DOI: 10.3390/curroncol29050247] [Citation(s) in RCA: 595] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.
Collapse
|
20
|
Kim M, Hwang J, Kim KA, Hwang S, Lee HJ, Jung JY, Lee JG, Cha YJ, Shim HS. Genomic characteristics of invasive mucinous adenocarcinoma of the lung with multiple pulmonary sites of involvement. Mod Pathol 2022; 35:202-209. [PMID: 34290355 PMCID: PMC8786658 DOI: 10.1038/s41379-021-00872-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Invasive mucinous adenocarcinoma (IMA) of the lung frequently presents with diffuse pneumonic-type features or multifocal lesions, which are regarded as a pattern of intrapulmonary metastases. However, the genomics of multifocal IMAs have not been well studied. We performed whole exome sequencing on samples taken from 2 to 5 regions in seven patients with synchronous multifocal IMAs of the lung (24 regions total). Early initiating driver events, such as KRAS, NKX2-1, TP53, or ARID1A mutations, are clonal mutations and were present in all multifocal IMAs in each patient. The tumor mutational burden of multifocal IMAs was low (mean: 1.13/mega base), but further analyses suggested intra-tumor heterogeneity. The mutational signature analysis found that IMAs were predominantly associated with endogenous mutational process (signature 1), APOBEC activity (signatures 2 and 13), and defective DNA mismatch repair (signature 6), but not related to smoking signature. IMAs synchronously located in the bilateral lower lobes of two patients with background usual interstitial pneumonia had different mutation types, suggesting that they were double primaries. In conclusion, genomic evidence found in this study indicated the clonal intrapulmonary spread of diffuse pneumonic-type or multifocal IMAs, although they can occur in multicentric origins in the background of usual interstitial pneumonia. IMAs exhibited a heterogeneous genomic landscape despite the low somatic mutation burden. Further studies are warranted to determine the clinical significance of the genomic characteristics of IMAs in expanded cohorts.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jinha Hwang
- Macrogen Inc., Seoul, Republic of Korea
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyung A Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hye-Jeong Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Marzio A, Kurz E, Sahni JM, Di Feo G, Puccini J, Jiang S, Hirsch CA, Arbini AA, Wu WL, Pass HI, Bar-Sagi D, Papagiannakopoulos T, Pagano M. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell 2022; 185:169-183.e19. [PMID: 34963055 PMCID: PMC8751279 DOI: 10.1016/j.cell.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/01/2021] [Accepted: 12/04/2021] [Indexed: 01/01/2023]
Abstract
Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.
Collapse
Affiliation(s)
- Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Emma Kurz
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jennifer M Sahni
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Giuseppe Di Feo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Alcantara Hirsch
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Arnaldo A Arbini
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Warren L Wu
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Harvey I Pass
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
22
|
Xu D, Li J, Wang D, Zhou L, Jin J, Wang Y. Prediction performance of twelve tumor mutation burden panels in melanoma and non-small cell lung cancer. Crit Rev Oncol Hematol 2022; 169:103573. [PMID: 34933103 DOI: 10.1016/j.critrevonc.2021.103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
As a potential biomarker to predict the response to immunotherapy, tumor mutation burden (TMB) which can be estimated by the cancer gene panel (CGP) has received considerable attention. However, it is not clear which CGP is better in predicting the efficacy of immunotherapy. To evaluate the twelve CGPs, we compared them on 13 datasets of melanoma and non-small cell lung cancer (NSCLC) from the perspective of gene composition, reliability of measuring TMB and prediction performance of patient treatment benefits. The larger CGPs generally performed better, but their proportions of driver genes and function densities were smaller. The CGPs performed differently on melanoma and NSCLC patients treated with two blockades. Moreover, their ability to classify and predict patients with or without long-term clinical benefits was similar but not good enough, so it is necessary to explore a higher-performance biomarker.
Collapse
Affiliation(s)
- Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Jiahuan Jin
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
23
|
Takada K, Takamori S, Shimokawa M, Toyokawa G, Shimamatsu S, Hirai F, Tagawa T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Inoue K, Yoneshima Y, Tanaka K, Okamoto I, Nakanishi Y, Mori M. Assessment of the albumin-bilirubin grade as a prognostic factor in patients with non-small-cell lung cancer receiving anti-PD-1-based therapy. ESMO Open 2021; 7:100348. [PMID: 34942439 PMCID: PMC8695291 DOI: 10.1016/j.esmoop.2021.100348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction The albumin-bilirubin (ALBI) grade is a novel indicator of the liver function. Some studies showed that the ALBI grade was a prognostic and predictive biomarker for the efficacy of chemotherapy in cancer patients. The association between the ALBI grade and outcomes in patients with non-small-cell lung cancer (NSCLC) treated with cancer immunotherapy, however, is poorly understood. Methods We retrospectively enrolled 452 patients with advanced or recurrent NSCLC who received anti-programmed cell death protein 1 (PD-1)-based therapy between 2016 and 2019 at three medical centers in Japan. The ALBI score was calculated from albumin and bilirubin measured at the time of treatment initiation and was stratified into three categories, ALBI grade 1-3, with reference to previous reports. We examined the clinical impact of the ALBI grade on the outcomes of NSCLC patients receiving anti-PD-1-based therapy using Kaplan–Meier survival curve analysis with log-rank test and Cox proportional hazards regression analysis. Results The classifications of the 452 patients were as follows: grade 1, n = 158 (35.0%); grade 2, n = 271 (60.0%); and grade 3, n = 23 (5.0%). Kaplan–Meier survival curve analysis showed that the ALBI grade was significantly associated with progression-free survival and overall survival. Moreover, Cox regression analysis revealed that the ALBI grade was an independent prognostic factor for progression-free survival and overall survival. Conclusion The ALBI grade was an independent prognostic factor for survival in patients with advanced or recurrent NSCLC who receive anti-PD-1-based therapy. These findings should be validated in a prospective study with a larger sample size. ALBI grade is calculated from albumin and bilirubin. We evaluated the impact of ALBI grade on survival in NSCLC patients receiving immune checkpoint inhibitors. ALBI grade was an independent prognostic factor for progression-free survival (PFS) and overall survival (OS). ALBI grade effectively stratified PFS and OS in patients with performance status 1-3. ALBI grade was significantly associated with PFS and OS, regardless of programmed death ligand-1.
Collapse
Affiliation(s)
- K Takada
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan.
| | - S Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - M Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - G Toyokawa
- Department of Thoracic Surgery, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - S Shimamatsu
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - F Hirai
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - T Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - M Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - Y Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - K Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - K Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - Y Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - I Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Y Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - M Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Machine Learning for Prediction of Immunotherapy Efficacy in Non-Small Cell Lung Cancer from Simple Clinical and Biological Data. Cancers (Basel) 2021; 13:cancers13246210. [PMID: 34944830 PMCID: PMC8699503 DOI: 10.3390/cancers13246210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are now a therapeutic standard in advanced non-small cell lung cancer (NSCLC), but strong predictive markers for ICIs efficacy are still lacking. We evaluated machine learning models built on simple clinical and biological data to individually predict response to ICIs. METHODS Patients with metastatic NSCLC who received ICI in second line or later were included. We collected clinical and hematological data and studied the association of this data with disease control rate (DCR), progression free survival (PFS) and overall survival (OS). Multiple machine learning (ML) algorithms were assessed for their ability to predict response. RESULTS Overall, 298 patients were enrolled. The overall response rate and DCR were 15.3% and 53%, respectively. Median PFS and OS were 3.3 and 11.4 months, respectively. In multivariable analysis, DCR was significantly associated with performance status (PS) and hemoglobin level (OR 0.58, p < 0.0001; OR 1.8, p < 0.001). These variables were also associated with PFS and OS and ranked top in random forest-based feature importance. Neutrophil-to-lymphocyte ratio was also associated with DCR, PFS and OS. The best ML algorithm was a random forest. It could predict DCR with satisfactory efficacy based on these three variables. Ten-fold cross-validated performances were: accuracy 0.68 ± 0.04, sensitivity 0.58 ± 0.08; specificity 0.78 ± 0.06; positive predictive value 0.70 ± 0.08; negative predictive value 0.68 ± 0.06; AUC 0.74 ± 0.03. CONCLUSION Combination of simple clinical and biological data could accurately predict disease control rate at the individual level.
Collapse
|
25
|
Wang X, Ricciuti B, Alessi JV, Nguyen T, Awad MM, Lin X, Johnson BE, Christiani DC. Smoking History as a Potential Predictor of Immune Checkpoint Inhibitor Efficacy in Metastatic Non-Small Cell Lung Cancer. J Natl Cancer Inst 2021; 113:1761-1769. [PMID: 34115098 PMCID: PMC8634315 DOI: 10.1093/jnci/djab116] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite the therapeutic efficacy of immune checkpoint inhibitors (ICIs) in a subset of patients, consistent and easily obtainable predictors of efficacy remain elusive. METHODS This study was conducted on 644 advanced non-small cell lung cancer (NSCLC) patients treated with ICI monotherapy between April 2013 and September 2020 at the Dana-Farber Cancer Institute and Brigham and Women's Hospital. Patient smoking history, clinicopathological characteristics, tumor mutation burden (TMB) by clinical targeted next-generation sequencing, and programmed death ligand-1 (PD-L1) tumor proportion score (TPS) by immunohistochemistry were prospectively collected. The association of smoking history with clinical outcomes of ICI monotherapy in metastatic NSCLC patients was evaluated after adjusting for other potential predictors. All statistical tests were 2-sided. RESULTS Of 644 advanced NSCLC patients, 105 (16.3%) were never smokers, 375 (58.2%) were former smokers (median pack-years = 28), and 164 (25.4%) were current smokers (median pack-years = 40). Multivariable logistic and Cox proportional hazards regression analyses suggested that doubling of smoking pack-years is statistically significantly associated with improved clinical outcomes of patients treated with ICI monotherapy (objective response rate odds ratio = 1.21, 95% confidence interval [CI] = 1.09 to 1.36, P < .001; progression-free survival hazard ratio = 0.92, 95% CI = 0.88 to 0.95, P < .001; overall survival hazard ratio = 0.94, 95% CI = 0.90 to 0.99, P = .01). Predictive models incorporating pack-years and PD-L1 TPS yielded additional information and achieved similar model performance compared with using TMB and PD-L1 TPS. CONCLUSIONS Increased smoking exposure had a statistically significant association with improved clinical outcomes in metastatic NSCLC treated with ICI monotherapy independent of PD-L1 TPS. Pack-years may serve as a consistent and readily obtainable surrogate of ICI efficacy when TMB is not available to inform prompt clinical decisions and allow more patients to benefit from ICIs.
Collapse
Affiliation(s)
- Xinan Wang
- The Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Bruce E Johnson
- Lowe Center for Thoracic Oncology and Center for Cancer Genomics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Ba H, Liu L, Peng Q, Chen J, Zhu YD. The relationship between blood-based tumor mutation burden level and efficacy of PD-1/PD-L1 inhibitors in advanced non-small cell lung cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21:1220. [PMID: 34774004 PMCID: PMC8590772 DOI: 10.1186/s12885-021-08924-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background The predictive role of blood-based tumor mutation burden (bTMB) for selecting advanced nonsmall cell lung cancer (NSCLC) patients who might benefit from immune checkpoint inhibitors (ICIs) is still under debate. Therefore, the purpose of this meta-analysis was to evaluate the efficacy of programmed cell death 1 (PD-1) /programmed cell death ligand 1 (PD-L1) inhibitors versus that of standard-of-care therapy in patients with NSCLC who were bTMB high and bTMB low. Methods PubMed, Embase, Cochrane, the Web of Science, and ClinicalTrials.gov were searched systematically from inception to February 2021 for studies of PD-1/PD-L1 inhibitors (durvalumab OR atezolizumab OR avelumab OR pembrolizumab OR Nivolumab) that provided hazard ratios (HRs) for overall survival (OS) or progression-free survival (PFS), or odds ratios (ORs) for objective response rate (ORR) in both bTMB high and bTMB low groups. Results A total of 2338 patients with advanced or metastatic NSCLC from six randomized controlled trials, which all used chemotherapy (CT) as a control, were included in this study. Compared with CT, PD-1/PD-L1 inhibitor therapy improved OS (HR 0.62, 95% CI 0.52–0.75, P < 0.01), PFS (HR 0.57, 95% CI 0.48–0.67, P < 0.01), and ORR (OR 2.69, 95% CI 1.84–3.93, P < 0.01) in bTMB-high NSCLC patients but not in bTMB-low patients (OS HR 0.86, 95% CI 0.69–1.07, P = 0.17; PFS HR 1.00, 95% CI 0.78–1.27, P = 0.98; ORR OR 0.63, 95% CI 0.49–0.80, P = 0.03). Subgroup analyses showed that these results were consistent across all subgroups (line of therapy, therapy regimen, type of NGS panel, PD-L1 expression, and cutoff value). Meta-regression analysis showed that the proportion of patients with squamous cell histology had no statistical effect on clinical outcomes. Sensitivity analyses illustrated that all results were stable. Conclusions The efficacy of PD-1/PD-L1 inhibitor therapy in advanced NSCLC patients may be dependent on bTMB level. Patients with high bTMB tend to obtain significantly better OS, PFS, and ORR from PD-1/PD-L1 inhibitor therapy than from CT. However, because of multiple limitations, including those related to reproducibility, the results are exploratory and should be interpreted with caution. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08924-z.
Collapse
Affiliation(s)
- He Ba
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Medical University of Anhui, Anhui, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical University of Anhui, Anhui, China
| | - Qiang Peng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Medical University of Anhui, Anhui, China
| | - Jie Chen
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Medical University of Anhui, Anhui, China
| | - Yao-Dong Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Medical University of Anhui, Anhui, China.
| |
Collapse
|
27
|
He Y, Ramesh A, Gusev Y, Bhuvaneshwar K, Giaccone G. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep Med 2021; 2:100392. [PMID: 34622229 PMCID: PMC8484507 DOI: 10.1016/j.xcrm.2021.100392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Thymic carcinoma is rare and has a poorer prognosis than thymomas. The treatment options are limited after failure of platinum-based chemotherapy. We previously performed a single-center phase II study of pembrolizumab in patients with advanced thymic carcinoma, showing a 22.5% response rate. Here, we characterize the genomic and transcriptomic profile of thymic carcinoma samples from 10 patients (5 non-responders versus 5 responders) in this cohort, with the main aim of identifying potential predictors of response to immunotherapy. We find that expression of PDL1 and alterations in genes or pathways that correlated with PD-L1 expression (CYLD and BAP1) could be potential predictors for response or resistance to immunotherapy in patients with advanced thymic carcinoma. Our study provides insights into potential predictive markers/pathways to select patients with thymic carcinoma for anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Yongfeng He
- Meyer Cancer Center, Weill Cornel Medicine, New York, NY 10065, USA
| | - Archana Ramesh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Yuriy Gusev
- Innovation Center of Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Krithika Bhuvaneshwar
- Innovation Center of Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Giuseppe Giaccone
- Meyer Cancer Center, Weill Cornel Medicine, New York, NY 10065, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
28
|
Al-Dherasi A, Liao Y, Al-Mosaib S, Hua R, Wang Y, Yu Y, Zhang Y, Zhang X, Jalayta R, Mousa H, Al-Danakh A, Alnadari F, Almoiliqy M, Baldi S, Shi L, Lv D, Li Z, Liu Q. Allele frequency deviation (AFD) as a new prognostic model to predict overall survival in lung adenocarcinoma (LUAD). Cancer Cell Int 2021; 21:451. [PMID: 34446004 PMCID: PMC8390239 DOI: 10.1186/s12935-021-02127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) remains one of the world’s most known aggressive malignancies with a high mortality rate. Molecular biological analysis and bioinformatics are of great importance as they have recently occupied a large area in the studies related to the identification of various biomarkers to predict survival for LUAD patients. In our study, we attempted to identify a new prognostic model by developing a new algorithm to calculate the allele frequency deviation (AFD), which in turn may assist in the early diagnosis and prediction of clinical outcomes in LUAD. Method First, a new algorithm was developed to calculate AFD using the whole-exome sequencing (WES) dataset. Then, AFD was measured for 102 patients, and the predictive power of AFD was assessed using Kaplan–Meier analysis, receiver operating characteristic (ROC) curves, and area under the curve (AUC). Finally, multivariable cox regression analyses were conducted to evaluate the independence of AFD as an independent prognostic tool. Result The Kaplan–Meier analysis showed that AFD effectively segregated patients with LUAD into high-AFD-value and low-AFD-value risk groups (hazard ratio HR = 1.125, 95% confidence interval CI 1.001–1.26, p = 0.04) in the training group. Moreover, the overall survival (OS) of patients who belong to the high-AFD-value group was significantly shorter than that of patients who belong to the low-AFD-value group with 42.8% higher risk and 10% lower risk of death for both groups respectively (HR for death = 1.10; 95% CI 1.01–1.2, p = 0.03) in the training group. Similar results were obtained in the validation group (HR = 4.62, 95% CI 1.22–17.4, p = 0.02) with 41.6%, and 5.5% risk of death for patients who belong to the high and low-AFD-value groups respectively. Univariate and multivariable cox regression analyses demonstrated that AFD is an independent prognostic model for patients with LUAD. The AUC for 5-year survival were 0.712 and 0.86 in the training and validation groups, respectively. Conclusion AFD was identified as a new independent prognostic model that could provide a prognostic tool for physicians and contribute to treatment decisions. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02127-z.
Collapse
Affiliation(s)
- Aisha Al-Dherasi
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Biochemistry, Faculty of Science, Ibb University, Ibb, Yemen
| | - Yuwei Liao
- Yangjiang Key Laboratory of Respiratory Diseases, Yangjiang Peoples Hospital, Yangjiang, Guangdong, People's Republic of China
| | - Sultan Al-Mosaib
- Department of Computer Science and Technology, Sahyadri Science Collage, Kuvempu University, Shimoga district, Karnataka, India
| | - Rulin Hua
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yichen Wang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yu Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Raeda Jalayta
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Haithm Mousa
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Fawze Alnadari
- Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Marwan Almoiliqy
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, 644000, Sichuan, China
| | - Salem Baldi
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Dekang Lv
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Zhiguang Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Quentin Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
29
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
30
|
Galvano A, Gristina V, Malapelle U, Pisapia P, Pepe F, Barraco N, Castiglia M, Perez A, Rolfo C, Troncone G, Russo A, Bazan V. The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): a systematic review and meta-analysis of randomized controlled trials. ESMO Open 2021; 6:100124. [PMID: 33940346 PMCID: PMC8111593 DOI: 10.1016/j.esmoop.2021.100124] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of tumor mutational burden (TMB) is still debated for selecting advanced non-oncogene addicted non-small-cell lung cancer (NSCLC) patients who might benefit from immune checkpoint inhibitors (ICIs). Of note, TMB failed to predict a benefit in overall survival (OS) among such patients. MATERIALS AND METHODS The purpose of this meta-analysis was to compare efficacy outcomes among first-line immune-oncology (IO) agents versus standard platinum-based chemotherapy (CT) within two subgroups (TMB-low and TMB-high on either tissue or blood). We collected hazard ratios (HRs) to evaluate the association for progression-free survival (PFS) and OS, with the relative 95% confidence intervals (CIs). Risk ratios (RRs) were used as an association measure for objective response rate (ORR). RESULTS Eight different cohorts of five randomized controlled phase III studies (3848 patients) were analyzed. In TMB-high patients, IO agents were associated with improved ORR (RRs 1.37, 95% CI 1.13-1.66), PFS (HR 0.69, 95% CI 0.61-0.79) and OS (HR 0.67, 95% CI 0.59-0.77) when compared with CT, thus suggesting a possible predictive role of high TMB for IO regimens. In TMB-low patients, the IO strategy did not lead to any significant benefit in survival and activity, whereas the pooled results of both ORR and PFS were intriguingly associated with a statistical significance in favor of CT. CONCLUSIONS This meta-analysis resulted in a proven benefit in OS in favor of IO agents in the TMB-high population. Although more prospective data are warranted, we postulated the hypothesis that monitoring TMB, in addition to the existing programmed death-ligand 1 (PD-L1) expression level, could represent the preferable option for future clinical research in the first-line management of advanced non-oncogene addicted NSCLC patients.
Collapse
Affiliation(s)
- A Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - V Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - U Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - P Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - F Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - N Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - M Castiglia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - A Perez
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - C Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - G Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy.
| | - V Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
32
|
Circulating tumor DNA in lung cancer: real-time monitoring of disease evolution and treatment response. Chin Med J (Engl) 2021; 133:2476-2485. [PMID: 32960843 PMCID: PMC7575184 DOI: 10.1097/cm9.0000000000001097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the leading causes of all cancer-related deaths. Circulating tumor DNA (ctDNA) is released from apoptotic and necrotic tumor cells. Several sensitive techniques have been invented and adapted to quantify ctDNA genomic alterations. Applications of ctDNA in lung cancer include early diagnosis and detection, prognosis prediction, detecting mutations and structural alterations, minimal residual disease, tumor mutational burden, and tumor evolution tracking. Compared to surgical biopsy and radiographic imaging, the advantages of ctDNA are that it is a non-invasive procedure, allows real-time monitoring, and has relatively high sensitivity and specificity. Given the massive research on non-small cell lung cancer, attention should be paid to small cell lung cancer.
Collapse
|
33
|
Mweempwa A, Rosenthal MA, Dimou J, Drummond KJ, Whittle JR. Perioperative clinical trials for glioma: Raising the bar. J Clin Neurosci 2021; 89:144-150. [PMID: 34119258 DOI: 10.1016/j.jocn.2021.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a heterogeneous group of primary brain cancers with poor survival despite multimodality therapy that includes surgery, radiation and chemotherapy. Numerous clinical trials have investigated systemic therapies in glioma, but have largely been negative. Multiple factors have contributed to the lack of progress including tumour heterogeneity, the tumour micro-environment and presence of the blood-brain barrier, as well as extrinsic factors relating to trial design, such as the lack of a contemporaneous biopsy at the time of treatment. A number of strategies have been proposed to progress new agents into the clinic. Here, we review the progress of perioperative, including phase 0 and 'window of opportunity', studies and provide recommendations for trial design in the development of new agents for glioma. The incorporation of pre- and post-treatment biopsies in glioma early phase trials will provide valuable pharmacokinetic and pharmacodynamic data and also determine the target or biomarker effect, which will guide further development of new agents. Perioperative 'window of opportunity' studies must use drugs with a recommended-phase-2-dose, known safety profile and adequate blood-brain barrier penetration. Drugs shown to have on-target effects in perioperative trials can then be evaluated further in a larger cohort of patients in an adaptive trial to increase the efficiency of drug development.
Collapse
Affiliation(s)
- Angela Mweempwa
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Mark A Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - James Dimou
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Wang X, Ricciuti B, Nguyen T, Li X, Rabin MS, Awad MM, Lin X, Johnson BE, Christiani DC. Association between Smoking History and Tumor Mutation Burden in Advanced Non-Small Cell Lung Cancer. Cancer Res 2021; 81:2566-2573. [PMID: 33653773 PMCID: PMC8137661 DOI: 10.1158/0008-5472.can-20-3991] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Lung carcinogenesis is a complex and stepwise process involving accumulation of genetic mutations in signaling and oncogenic pathways via interactions with environmental factors and host susceptibility. Tobacco exposure is the leading cause of lung cancer, but its relationship to clinically relevant mutations and the composite tumor mutation burden (TMB) has not been fully elucidated. In this study, we investigated the dose-response relationship in a retrospective observational study of 931 patients treated for advanced-stage non-small cell lung cancer (NSCLC) between April 2013 and February 2020 at the Dana Farber Cancer Institute and Brigham and Women's Hospital. Doubling smoking pack-years was associated with increased KRASG12C and less frequent EGFRdel19 and EGFRL858R mutations, whereas doubling smoking-free months was associated with more frequent EGFRL858R . In advanced lung adenocarcinoma, doubling smoking pack-years was associated with an increase in TMB, whereas doubling smoking-free months was associated with a decrease in TMB, after controlling for age, gender, and stage. There is a significant dose-response association of smoking history with genetic alterations in cancer-related pathways and TMB in advanced lung adenocarcinoma. SIGNIFICANCE: This study clarifies the relationship between smoking history and clinically relevant mutations in non-small cell lung cancer, revealing the potential of smoking history as a surrogate for tumor mutation burden.
Collapse
Affiliation(s)
- Xinan Wang
- Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xihao Li
- Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Michael S Rabin
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bruce E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts.
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Hofman P. Next-Generation Sequencing with Liquid Biopsies from Treatment-Naïve Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2021; 13:2049. [PMID: 33922637 PMCID: PMC8122958 DOI: 10.3390/cancers13092049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, the liquid biopsy (LB), a non-invasive and easy to repeat approach, has started to compete with the tissue biopsy (TB) for detection of targets for administration of therapeutic strategies for patients with advanced stages of lung cancer at tumor progression. A LB at diagnosis of late stage non-small cell lung carcinoma (NSCLC) is also being performed. It may be asked if a LB can be complementary (according to the clinical presentation or systematics) or even an alternative to a TB for treatment-naïve advanced NSCLC patients. Nucleic acid analysis with a TB by next-generation sequencing (NGS) is gradually replacing targeted sequencing methods for assessment of genomic alterations in lung cancer patients with tumor progression, but also at baseline. However, LB is still not often used in daily practice for NGS. This review addresses different aspects relating to the use of LB for NGS at diagnosis in advanced NSCLC, including its advantages and limitations.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d’Azur, CHU Nice, FHU OncoAge, Pasteur Hospital, 30 avenue de la voie romaine, BP69, CEDEX 01, 06001 Nice, France; ; Tel.: +33-4-92-03-88-55 or +33-4-92-03-87-49; Fax: +33-4-92-88-50
- Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, CHU Nice, FHU OncoAge, 06001 Nice, France
| |
Collapse
|
36
|
Jiang J, Jin Z, Zhang Y, Peng L, Zhang Y, Zhu Z, Wang Y, Tong D, Yang Y, Wang J, Yang Y, Xiao K. Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer. Front Immunol 2021; 12:646874. [PMID: 33927719 PMCID: PMC8076602 DOI: 10.3389/fimmu.2021.646874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background The development of immune checkpoint inhibitors (ICIs) is a revolutionary milestone in the field of immune-oncology. However, the low response rate is the major problem of ICI treatment. The recent studies showed that response rate to single-agent programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibition in unselected non-small cell lung cancer (NSCLC) patients is 25% so that researchers defined several biomarkers to predict the response of immunotherapy in ICIs treatment. Common biomarkers like tumor mutational burden (TMB) and PD-L1 expression have several limitations, such as low accuracy and inadequately validated cutoff value. Methods Two published and an unpublished ICIs treatment NSCLC cohorts with 129 patients were collected and divided into a training cohort (n = 53), a validation cohort (n = 22), and two independent test cohorts (n = 34 and n = 20). We identified six immune-related pathways whose mutational status was significantly associated with overall survival after ICIs treatment. Then these pathways mutational status combined with TMB, PD-L1 expression and intratumor heterogeneity were incorporated to build a Bayesian-regularization neural networks (BRNN) model to predict the ICIs treatment response. Results We firstly proved that TMB, PD-L1, and mutant-allele tumor heterogeneity (MATH) were independent biomarkers. The survival analysis of six immune-related pathways revealed the mutational status could distinguish overall survival after ICIs treatment. When predicting immunotherapy efficacy, the overall accuracy of area under curve (AUC) in validation cohort reaches 0.85, outperforming previous predictors in either sensitivity or specificity. And the AUC in two independent test cohorts reach 0.74 and 0.80. Conclusion We developed a pathway-model that could predict the efficacy of ICIs in NSCLC patients. Our study made a significant contribution to solving the low prediction accuracy of immunotherapy of single biomarker. With the accumulation of larger data sets, further studies are warranted to refine the predictive performance of the approach.
Collapse
Affiliation(s)
- Jiehan Jiang
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Yiqun Zhang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yue Zhang
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhiruo Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohui Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - De Tong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yining Yang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Jianfei Wang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Yadong Yang
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Kui Xiao
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Augustus E, Zwaenepoel K, Siozopoulou V, Raskin J, Jordaens S, Baggerman G, Sorber L, Roeyen G, Peeters M, Pauwels P. Prognostic and Predictive Biomarkers in Non-Small Cell Lung Cancer Patients on Immunotherapy-The Role of Liquid Biopsy in Unraveling the Puzzle. Cancers (Basel) 2021; 13:1675. [PMID: 33918147 PMCID: PMC8036384 DOI: 10.3390/cancers13071675] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, immunotherapy has been one of the most important advances in the non-small cell lung cancer (NSCLC) treatment landscape. Nevertheless, only a subset of NSCLC patients benefits from it. Currently, the only Food and Drug Administration (FDA) approved diagnostic test for first-line immunotherapy in metastatic NSCLC patients uses tissue biopsies to determine the programmed death ligand 1 (PD-L1) status. However, obtaining tumor tissue is not always feasible and puts the patient at risk. Liquid biopsy, which refers to the tumor-derived material present in body fluids, offers an alternative approach. This less invasive technique gives real-time information on the tumor characteristics. This review addresses different promising liquid biopsy based biomarkers in NSCLC patients that enable the selection of patients who benefit from immunotherapy and the monitoring of patients during this therapy. The challenges and the opportunities of blood-based biomarkers such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), exosomes, epigenetic signatures, microRNAs (miRNAs) and the T cell repertoire will be addressed. This review also focuses on the less-studied feces-based and breath-based biomarkers.
Collapse
Affiliation(s)
- Elien Augustus
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Jo Raskin
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Stephanie Jordaens
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp (UAntwerp), 2020 Antwerpen, Belgium;
- Health Unit, Vlaamse Instelling voor Technologisch Onderzoek (VITO), 2400 Mol, Belgium
| | - Laure Sorber
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Geert Roeyen
- Department of Hepato-Pancreato-Biliary, Endocrine and Transplantation Surgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Marc Peeters
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research Antwerp (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp (UAntwerp), 2610 Wilrijk, Belgium; (K.Z.); (V.S.); (S.J.); (L.S.); (M.P.); (P.P.)
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| |
Collapse
|
38
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Gile JJ, Liu AJ, McGarrah PW, Eiring RA, Hobday TJ, Starr JS, Sonbol MB, Halfdanarson TR. Efficacy of Checkpoint Inhibitors in Neuroendocrine Neoplasms: Mayo Clinic Experience. Pancreas 2021; 50:500-505. [PMID: 33939660 DOI: 10.1097/mpa.0000000000001794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Checkpoint inhibitors (CPIs) for low- and intermediate-grade neuroendocrine tumors (NETs) have been associated with limited efficacy; recent studies suggest CPIs may represent promising treatment for high-grade neuroendocrine neoplasms (NENs). METHODS We examined 57 patients with NENs who were treated with CPIs to determine if NETs and neuroendocrine carcinomas (NECs) respond to immunotherapy. RESULTS Patients with poorly differentiated NECs on CPI monotherapy had an objective response rate (ORR) of 0% and median progression-free survival (PFS) of 2.1 months (95% confidence interval [CI], 0.5-4.6). Patients with poorly differentiated NECs on dual CPI therapy had an ORR of 13% and PFS of 3.5 months (95% CI, 1.4-not reached [NR]). Patients with poorly differentiated NECs on CPI and cytotoxic therapy had an ORR of 36% with PFS of 4.2 months (95% CI, 1.6-NR). Well-differentiated grade 1 and 2 NETs on CPI monotherapy had an ORR of 25% with PFS NR. Well-differentiated grade 3 NETs had 0% ORR with a PFS of 2.9 months (95% CI, 1.4-4.2) on CPI monotherapy. CONCLUSIONS Checkpoint inhibitor therapy shows limited activity in patients with NENs. Future studies should identify biomarkers that can help identify patients who are likely responders to immunotherapy.
Collapse
Affiliation(s)
- Jennifer J Gile
- From the Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alex J Liu
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ
| | - Patrick W McGarrah
- From the Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Rachel A Eiring
- From the Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Timothy J Hobday
- From the Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jason S Starr
- Division of Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Mohamad B Sonbol
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ
| | | |
Collapse
|
40
|
Carrot-Zhang J, Soca-Chafre G, Patterson N, Thorner AR, Nag A, Watson J, Genovese G, Rodriguez J, Gelbard MK, Corrales-Rodriguez L, Mitsuishi Y, Ha G, Campbell JD, Oxnard GR, Arrieta O, Cardona AF, Gusev A, Meyerson M. Genetic Ancestry Contributes to Somatic Mutations in Lung Cancers from Admixed Latin American Populations. Cancer Discov 2021; 11:591-598. [PMID: 33268447 PMCID: PMC7933062 DOI: 10.1158/2159-8290.cd-20-1165] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
Inherited lung cancer risk, particularly in nonsmokers, is poorly understood. Genomic and ancestry analysis of 1,153 lung cancers from Latin America revealed striking associations between Native American ancestry and their somatic landscape, including tumor mutational burden, and specific driver mutations in EGFR, KRAS, and STK11. A local Native American ancestry risk score was more strongly correlated with EGFR mutation frequency compared with global ancestry correlation, suggesting that germline genetics (rather than environmental exposure) underlie these disparities. SIGNIFICANCE: The frequency of somatic EGFR and KRAS mutations in lung cancer varies by ethnicity, but we do not understand why. Our study suggests that the variation in EGFR and KRAS mutation frequency is associated with genetic ancestry and suggests further studies to identify germline alleles that underpin this association.See related commentary by Gomez et al., p. 534.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Jian Carrot-Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts
| | - Giovanny Soca-Chafre
- Personalized Medicine Laboratory, Instituto Nacional de Cancerologia, México City, México
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anwesha Nag
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline Watson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Giulio Genovese
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts
| | - July Rodriguez
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Maya K Gelbard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Luis Corrales-Rodriguez
- Medical Oncology, Hospital San Juan de Dios, San José, Costa Rica
- Centro de Investigación y Manejo del Cáncer - CIMCA, San José, Costa Rica
| | - Yoichiro Mitsuishi
- Division of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerologia, México City, México.
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | - Andres F Cardona
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Mograbi B, Heeke S, Hofman P. The Importance of STK11/ LKB1 Assessment in Non-Small Cell Lung Carcinomas. Diagnostics (Basel) 2021; 11:196. [PMID: 33572782 PMCID: PMC7912095 DOI: 10.3390/diagnostics11020196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the recent implementation of immunotherapy as a single treatment or in combination with chemotherapy for first-line treatment of advanced non-small cell lung cancer (NSCLC), many patients do not benefit from this regimen due to primary treatment resistance or toxicity. Consequently, there is an urgent need to develop efficient biomarkers that can select patients who will benefit from immunotherapy thereby providing the appropriate treatment and avoiding toxicity. One of the biomarkers recently described for the stratification of NSCLC patients undergoing immunotherapy are mutations in STK11/LKB1, which are often associated with a lack of response to immunotherapy in some patients. Therefore, the purpose of this review is to describe the different cellular mechanisms associated with STK11/LKB1 mutations, which may explain the lack of response to immunotherapy. Moreover the review addresses the co-occurrence of additional mutations that may influence the response to immunotherapy and the current clinical studies that have further explored STK11/LKB1 as a predictive biomarker. Additionally this work includes the opportunities and limitations to look for the STK11/LKB1 status in the therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Baharia Mograbi
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Hofman
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
- CHU Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
42
|
Ma X, Zhang Y, Wang S, Yu J. Predictive value of tumor mutation burden (TMB) with targeted next-generation sequencing in immunocheckpoint inhibitors for non-small cell lung cancer (NSCLC). J Cancer 2021; 12:584-594. [PMID: 33391454 PMCID: PMC7738995 DOI: 10.7150/jca.48105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background: To evaluate the clinical predictive value of tumor mutation burden (TMB) for immune checkpoint inhibitor (ICI) therapy in patients with non-small cell lung cancer (NSCLC). Method: As of 15 February 2020, PubMed, PMC and EMBASE databases as well as the American society of clinical oncology (ASCO) and European society of medical oncology (ESMO) databases were searched. The Mantel-Haenszel or inverse variance weighted fixed-effects model (I2 ≤ 50%) or random-effects model (I2 > 50%) were used to evaluate OR and its 95% CI of objective response rate (ORR) and disease control rate (DCR) , as well as HR and its 95% CI of progression-free survival (PFS) and overall survival (OS). In addition, we did publication bias, heterogeneity analysis, sensitivity analysis and subgroup analysis. And quality of the studies included and the level of evidence for outcome measures were evaluated. Results: 14 studies involving 2872 patients were included. The ORR (OR 3.52, 95%CI 2.32-5.35, p < 0.00001), DCR (OR 3.26, 95%CI 1.91-5.55, p < 0.0001), PFS (HR 0.81, 95%CI 0.74-0.89, p < 0.00001) and OS (HR 0.83, 95%CI 0.74-0.94, p = 0.002) of ICI therapy in the high TMB group were all superior to those in the low TMB group. Conclusions: TMB is a promising biomarker, which can predict the efficacy of ICI therapy in advanced NSCLC patients, included ORR, DCR, PFS and OS.
Collapse
Affiliation(s)
- Xiaoting Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Yujian Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
43
|
Sheehan K, Schalper KA. Tumor Microenvironment: Immune Effector and Suppressor Imbalance. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Esposito Abate R, Frezzetti D, Maiello MR, Gallo M, Camerlingo R, De Luca A, De Cecio R, Morabito A, Normanno N. Next Generation Sequencing-Based Profiling of Cell Free DNA in Patients with Advanced Non-Small Cell Lung Cancer: Advantages and Pitfalls. Cancers (Basel) 2020; 12:E3804. [PMID: 33348595 PMCID: PMC7766403 DOI: 10.3390/cancers12123804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is the main cause of death for cancer worldwide and non-small cell lung cancer (NSCLC) represents the most common histology. The discovery of genomic alterations in driver genes that offer the possibility of therapeutic intervention has completely changed the approach to the diagnosis and therapy of advanced NSCLC patients, and tumor molecular profiling has become mandatory for the choice of the most appropriate therapeutic strategy. However, in approximately 30% of NSCLC patients tumor tissue is inadequate for biomarker analysis. The development of highly sensitive next generation sequencing (NGS) technologies for the analysis of circulating cell-free DNA (cfDNA) is emerging as a valuable alternative to assess tumor molecular landscape in case of tissue unavailability. Additionally, cfDNA NGS testing can better recapitulate NSCLC heterogeneity as compared with tissue testing. In this review we describe the main advantages and limits of using NGS-based cfDNA analysis to guide the therapeutic decision-making process in advanced NSCLC patients, to monitor the response to therapy and to identify mechanisms of resistance early. Therefore, we provide evidence that the implementation of cfDNA NGS testing in clinical research and in the clinical practice can significantly improve precision medicine approaches in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rossella De Cecio
- Department of Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Alessandro Morabito
- Department of Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| |
Collapse
|
45
|
Nicoś M, Krawczyk P, Crosetto N, Milanowski J. The Role of Intratumor Heterogeneity in the Response of Metastatic Non-Small Cell Lung Cancer to Immune Checkpoint Inhibitors. Front Oncol 2020; 10:569202. [PMID: 33344229 PMCID: PMC7746867 DOI: 10.3389/fonc.2020.569202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent one of the most promising therapeutic approaches in metastatic non-small cell lung cancer (M-NSCLC). Unfortunately, approximately 50–75% of patients do not respond to this treatment modality. Intratumor heterogeneity (ITH) at the genetic and phenotypic level is considered as a major cause of anticancer therapy failure, including resistance to ICIs. Recent observations suggest that spatial heterogeneity in the composition and spatial organization of the tumor microenvironment plays a major role in the response of M-NSCLC patients to ICIs. In this mini review, we first present a brief overview of the use of ICIs in M-NSCLC. We then discuss the role of genetic and non-genetic ITH on the efficacy of ICIs in patients with M-NSCLC.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
46
|
Maharjan M, Tanvir RB, Chowdhury K, Duan W, Mondal AM. Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies. BMC Bioinformatics 2020; 21:218. [PMID: 33272232 PMCID: PMC7713218 DOI: 10.1186/s12859-020-3524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung cancer is the number one cancer killer in the world with more than 142,670 deaths estimated in the United States alone in the year 2019. Consequently, there is an overreaching need to identify the key biomarkers for lung cancer. The aim of this study is to computationally identify biomarker genes for lung cancer that can aid in its diagnosis and treatment. The gene expression profiles of two different types of studies, namely non-treatment and treatment, are considered for discovering biomarker genes. In non-treatment studies healthy samples are control and cancer samples are cases. Whereas, in treatment studies, controls are cancer cell lines without treatment and cases are cancer cell lines with treatment. RESULTS The Differentially Expressed Genes (DEGs) for lung cancer were isolated from Gene Expression Omnibus (GEO) database using R software tool GEO2R. A total of 407 DEGs (254 upregulated and 153 downregulated) from non-treatment studies and 547 DEGs (133 upregulated and 414 downregulated) from treatment studies were isolated. Two Cytoscape apps, namely, CytoHubba and MCODE, were used for identifying biomarker genes from functional networks developed using DEG genes. This study discovered two distinct sets of biomarker genes - one from non-treatment studies and the other from treatment studies, each set containing 16 genes. Survival analysis results show that most non-treatment biomarker genes have prognostic capability by indicating low-expression groups have higher chance of survival compare to high-expression groups. Whereas, most treatment biomarkers have prognostic capability by indicating high-expression groups have higher chance of survival compare to low-expression groups. CONCLUSION A computational framework is developed to identify biomarker genes for lung cancer using gene expression profiles. Two different types of studies - non-treatment and treatment - are considered for experiment. Most of the biomarker genes from non-treatment studies are part of mitosis and play vital role in DNA repair and cell-cycle regulation. Whereas, most of the biomarker genes from treatment studies are associated to ubiquitination and cellular response to stress. This study discovered a list of biomarkers, which would help experimental scientists to design a lab experiment for further exploration of detail dynamics of lung cancer development.
Collapse
Affiliation(s)
- Mona Maharjan
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Raihanul Bari Tanvir
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Kamal Chowdhury
- School of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC, USA
| | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ananda Mohan Mondal
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
47
|
Martin JC. Genetic Biomarkers: Implications of Increased Understanding and Identification in Lung Cancer Management. Clin J Oncol Nurs 2020; 24:648-656. [PMID: 33216060 DOI: 10.1188/20.cjon.648-656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In the management of lung cancer, molecular profiling of the tumor is pivotal to defining a personalized treatment plan and is recommended for each patient. OBJECTIVES The purpose of this article is to provide an update on genomic testing in lung cancer and the associated targeted treatment options. In addition, emerging biomarkers and mechanisms of resistance are discussed. METHODS A comprehensive review of the CINAHL®, MEDLINE®, and PubMed® databases was performed. FINDINGS Molecular tumor profiling has advanced treatment options for patients diagnosed with lung cancer. Knowledge about pathologic variants and inhibitory pathways have led to the development of targeted treatments for lung cancer. Based on a solid understanding of molecular biomarkers, testing protocols, testing results, and how biomarkers affect treatment decisions, nurses can best educate and support patients and family members as clinical care incorporates molecular profiling.
Collapse
|
48
|
Khasraw M, Walsh KM, Heimberger AB, Ashley DM. What is the Burden of Proof for Tumor Mutational Burden in gliomas? Neuro Oncol 2020; 23:noaa256. [PMID: 33252666 PMCID: PMC7849945 DOI: 10.1093/neuonc/noaa256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The treatment of patients with a variety of solid tumors has benefitted from immune checkpoint inhibition targeting the anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis. The US Food and Drug Administration (FDA) granted accelerated approval of PD-1 inhibitor pembrolizumab for the treatment of adult and pediatric patients with TMB-high (TMB-H), solid tumors that have progressed following prior treatment and who have no other treatment options, including the extension to tumors of the Central Nervous System (CNS). In general, pan-cancer approvals are viewed positively to empower patients and clinicians. There are subsets (eg, BRAF, NTRK) for which this pathway for approval is appropriate. However, the pan-cancer FDA approval of pembrolizumab raises several concerns regarding the generalizability of the evidence to other tumor types, including managing patients with gliomas and other CNS tumors. The cut off for TMB-H is not well defined. There are intrinsic immunological differences between gliomas and other cancers types, including the immunosuppressive glioma microenvironment, the tumor's effects on systemic immune function, and the transformation of the T cell populations to an exhausted phenotype in glioma. Here we address the caveats with pan-cancer approvals concerning gliomas, complexities of the unique CNS immune environment, and discuss potential predictive biomarkers, including TMB, and explain why the recent approval should be applied with caution in CNS tumors.
Collapse
Affiliation(s)
- Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Kyle M Walsh
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
49
|
Feng H, Shen W. ACAA1 Is a Predictive Factor of Survival and Is Correlated With T Cell Infiltration in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:564796. [PMID: 33194642 PMCID: PMC7642998 DOI: 10.3389/fonc.2020.564796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the predominant subtype of lung cancers. KRAS mutation is the second most prevalent mutation in NSCLC. KRAS mutant cancer cells suppress the anti-tumor T cell response. However, the underlying mechanism is still unknown. Here, we analyzed the differential expression of acetyl-CoA acyltransferase 1 (ACAA1) in various types of cancers using the TIMER database and validated the results in the NSCLC cell line H1944. We silenced oncogenic KRAS by siRNA targeting KRASG13D, and employed an MAPK signaling pathway inhibitor to clarify the possible regulatory pathway. Moreover, we analyzed the correlation of ACAA1 expression level with B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Correlations between expression of ACAA1 and several biomarkers of mutation burden were also tested. Finally, we evaluated the prognostic value of ACAA1 in a wide range of cancers using the Kaplan-Meier Plotter Database. We found lower expression of ACAA1 in tumor tissue than in adjacent normal tissue in various cancers. This result was confirmed using a GEO dataset. Knock-down of mutant KRAS resulted in increased ACAA1 mRNA level in H1944 cells. ACAA1 mRNA level was significantly upregulated in H1944 after treatment with MAPK pathway inhibitor sorafenib, indicating that oncogenic KRAS may downregulate ACAA1 through MAPK signaling. ACAA1 was negatively correlated with biomarkers of tumor mutation burden, including BRCA1, ATM, ATR, CDK1, PMS2, MSH2, and MDH6. Conversely, ACAA1 expression was positively correlated with infiltrating CD4+ cells and with Th1, Th2, Treg cells in the lung tumor microenvironment. Finally, we showed that ACAA1 is a predictive factor for survival in several cancer types. In summary, decreased ACAA1 expression is correlated with poor prognosis and decreases immune infiltration of CD4+ T cells in LUAD and LUSC. ACAA1 also predicts T cell exhaustion in LUSC. The mechanism underlying KRAS/ACAA1 axis-mediated regulation of immune cell infiltration requires further investigation.
Collapse
Affiliation(s)
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
50
|
Sesma A, Pardo J, Cruellas M, Gálvez EM, Gascón M, Isla D, Martínez-Lostao L, Ocáriz M, Paño JR, Quílez E, Ramírez A, Torres-Ramón I, Yubero A, Zapata M, Lastra R. From Tumor Mutational Burden to Blood T Cell Receptor: Looking for the Best Predictive Biomarker in Lung Cancer Treated with Immunotherapy. Cancers (Basel) 2020; 12:E2974. [PMID: 33066479 PMCID: PMC7602200 DOI: 10.3390/cancers12102974] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall response rates (ORR) remain low in unselected patients and a large proportion of patients undergo disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been the first biomarker developed. However, its use as a robust predictive biomarker has been limited due to the variability of techniques used, with different antibodies and thresholds. In this context, tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as the total number of nonsynonymous mutations per DNA megabases being a mechanism generating neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRβ (TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in combination for accurately identifying patients who most likely will benefit of ICIs.
Collapse
Affiliation(s)
- Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Julián Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
- ARAID Foundation (IIS Aragón), 50009 Zaragoza, Spain
- Microbiology, Preventive Medicine and Public Health Department, Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine Network (CIBER-BBN), 28029 Madrid, Spain
| | - Mara Cruellas
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Eva M. Gálvez
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain;
| | - Marta Gascón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
| | - Maitane Ocáriz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - José Ramón Paño
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Ariel Ramírez
- Nanotoxicology and Immunotoxicology Unit (IIS Aragón), 50009 Zaragoza, Spain;
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - María Zapata
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (M.C.); (M.G.); (D.I.); (M.O.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.)
| |
Collapse
|