1
|
Khan MN, Farooq U, Khushal A, Wani TA, Zargar S, Khan S. Unraveling potential EGFR kinase inhibitors: Computational screening, molecular dynamics insights, and MMPBSA analysis for targeted cancer therapy development. PLoS One 2025; 20:e0321500. [PMID: 40344575 PMCID: PMC12064201 DOI: 10.1371/journal.pone.0321500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
EGFR is critical for tumor angiogenesis and cancer progression, but existing treatments like erlotinib face limitations such as acquired resistance and side effects. To address these issues, this study employs structure-based drug design techniques including virtual screening, molecular docking, and molecular dynamics simulations to identify new small molecule inhibitors targeting the EGFR kinase domain. From an initial selection of 633,000 compounds from diverse databases, top candidates were identified based on their binding affinity and stability. The virtual screening and docking analyses revealed compounds with higher binding scores than erlotinib. Molecular dynamics simulations and Anisotropic Network Model (ANM) analysis uniquely report that EGFR undergoes significant conformational shifts: inward flap movements in the bound state stabilize a closed conformation, while outward movements in the free state result in a more open conformation. Among the identified inhibitors, compounds such as JFD00243, NPA015124, and others exhibited strong binding affinities and stable interactions with both active and inactive forms of EGFR. Notably, JFD00243 was effective in targeting EGFR in both active and inactive conformations. These findings suggest that the identified inhibitors could potentially overcome current treatment limitations and improve targeted cancer therapies by effectively inhibiting EGFR-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Muhammad Naseem Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Abdelmalek D, Smaoui F, Frikha F, Ben Marzoug R, Msalbi D, Souissi A, Aifa MS. Computational identification of new TKI as potential noncovalent reversible EGFR L858R/T790M inhibitors: VHTS, molecular docking, DFT study and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:4870-4887. [PMID: 37349947 DOI: 10.1080/07391102.2023.2223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
The mutations concerned with non-small cell lung cancer involving epidermal growth factor receptor of tyrosine kinase family have primarily targeted. In this study, we employed a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 50.000 Erlotinib-derived compounds as noncovalent reversible EGFRL858R/T790M inhibitors. Our HTVS work flow leverages include HTVS, SP (Standard Precision) and XP (Extra Precision) docking protocol along with its relative binding free energy calculation, cluster analysis study and ADMET properties. Then we used multiple ns-time scale molecular dynamics (MD) simulations and density functional theory (DFT) precise calculation techniques to elucidate how the bound ligand interact with the complexes conformational states involving motions both proximal and distal to the binding site. Based on glide score and protein-ligand interactions, the highest scoring molecule was selected for molecular dynamic simulation providing a complete insight into the conformational stability. A hyperfine analysis of DFT based refinement strategy highly supported their stability by strong intermolecular interactions. Together, our results demonstrate that the virtually screened top retained molecules present the best moieties introduced to Erlotinib. They exhibit interesting pharmacokinetic properties that can act as potent antitumor drug candidates than the lead compound drug and in some extent tackling the drug resistance problem which offer a springboard for further therapeutic experiments and applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorra Abdelmalek
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fahmi Smaoui
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Boukansa S, Benbrahim Z, Gamrani S, Bardai S, Bouguenouch L, Mazti A, Boutahiri N, Serraj M, Amara B, Ouadnouni Y, Smahi M, Alami B, Mellas N, El Fatemi H. Correlation of Epidermal Growth Factor Receptor Mutation With Major Histologic Subtype of Lung Adenocarcinoma According to IASLC/ATS/ERS Classification. Cancer Control 2022; 29:10732748221084930. [PMID: 35348028 PMCID: PMC8969502 DOI: 10.1177/10732748221084930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Our prospective study aims to define the correlation of EGFR(epidermal growth factor receptor) mutations with major histological subtypes of lung adenocarcinoma from resected and non-resected specimens, according to the WHO 2015 classification, in Moroccan North East Population. METHODS Epidermal growth factor receptor mutations of 150 primary lung adenocarcinoma were performed using Real-Time PCR or SANGER sequencing. SPSS 21 was used to assess the relationship between histological subtypes of lung adenocarcinoma and EGFR mutation status. RESULTS 25 mutations were detected in the series of 150 lung adenocarcinomas, most of which were found in cases with papillary, acinar, patterns than without these patterns and more frequently occurred in the cases without solid pattern than with this pattern. A significant correlation was observed between EGFR mutation and acinar (P = 0,024), papillary pattern (P = 0,003) and, negative association with a solid pattern (P < 0,001). In females, EGFR mutations were significantly correlated with the acinar pattern (P = 0,02), whereas in males with the papillary pattern (P = 0,01). Association between the histologic component and exon 19 deletions and exon 21 mutations were also evaluated and, we found a significant correlation between the papillary major pattern with exon 19 mutations (P = 0,004) and, ex21 with the acinar component (P = 0,03). CONCLUSION An analysis of resected and non-resected lung ADC specimens in 150 Moroccan Northeast patients, revealed that acinar and papillary patterns may predict the presence of a mutation in the EGFR gene. While the solid major pattern may indicate a low mutation rate of the EGFR gene.
Collapse
Affiliation(s)
- Sara Boukansa
- Faculty of Medicine and Pharmacy, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zineb Benbrahim
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanaa Gamrani
- Faculty of Medicine and Pharmacy, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanae Bardai
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Asmae Mazti
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nadia Boutahiri
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yassine Ouadnouni
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Smahi
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Badreeddine Alami
- Department of Radiology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nawfel Mellas
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hinde El Fatemi
- Faculty of Medicine and Pharmacy, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. CRYSTALS 2020. [DOI: 10.3390/cryst10090725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The parallel advances of different scientific fields provide a contemporary scenario where collaboration is not a differential, but actually a requirement. In this context, crystallography has had a major contribution on the medical sciences, providing a “face” for targets of diseases that previously were known solely by name or sequence. Worldwide, cancer still leads the number of annual deaths, with 9.6 million associated deaths, with a major contribution from lung cancer and its 1.7 million deaths. Since the relationship between cancer and kinases was unraveled, these proteins have been extensively explored and became associated with drugs that later attained blockbuster status. Crystallographic structures of kinases related to lung cancer and their developed and marketed drugs provided insight on their conformation in the absence or presence of small molecules. Notwithstanding, these structures were also of service once the initially highly successful drugs started to lose their effectiveness in the emergence of mutations. This review focuses on a subclassification of lung cancer, non-small cell lung cancer (NSCLC), and major oncogenic driver mutations in kinases, and how crystallographic structures can be used, not only to provide awareness of the function and inhibition of these mutations, but also how these structures can be used in further computational studies aiming at addressing these novel mutations in the field of personalized medicine.
Collapse
|
5
|
Li XF, Shen WZ, Jin X, Ren P, Zhang J. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations. Sci Rep 2020; 10:11236. [PMID: 32641854 PMCID: PMC7343825 DOI: 10.1038/s41598-020-67908-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs’ action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Chaoyang, Changchun, 130021, Jilin, People's Republic of China.
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|