1
|
Ren D, Chen X, Liu H, Li M, Zheng L, Yong P, Huang M, Shi X, Xu Y, Chen S, Zhang Y, Zhu W. Exploring the efficacy of (R)-PFI-2 hydrochloride in mitigating noise-induced hearing loss by targeting NLRP3 inflammasome and NF-κB pathway to reduce inner ear inflammation. J Otol 2024; 19:200-206. [PMID: 39776548 PMCID: PMC11701333 DOI: 10.1016/j.joto.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 01/11/2025] Open
Abstract
Noise-induced hearing loss (NIHL) is primarily driven by inflammatory processes within the cochlea, where noise exposure triggers the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, leading to an inflammatory cascade. The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation. Our findings reveal that (R)-PFI-2 hydrochloride, a selective inhibitor of the SETD7 enzyme, effectively inhibits the activation of the cochlear NF-κB pathway, suppresses the release of pro-inflammatory factors, and prevents inflammasome assembly. This intervention disrupts the perpetuating cycle of inflammation, thereby alleviating damage to cochlear hair cells attributed to acoustic trauma. Consequently, (R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL, targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xuemin Chen
- Department of Otorhinolaryngology, No. 971 Hospital of People's Liberation Army Navy, Qingdao, 266000, Shandong Province, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
| | - Hongdong Liu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100083, China
| | - Menghua Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Pan Yong
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Mohe Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Provine, China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya,572000, Hainan Provine, China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Provine, China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya,572000, Hainan Provine, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China
| | - Shujin Chen
- ENT Department, The People's Hospital of Rongchang District, Chongqing, 402460, China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
2
|
Pan X, Fan J, Peng F, Xiao L, Yang Z. SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways. Bioengineered 2022; 13:7253-7261. [PMID: 35259059 PMCID: PMC8974222 DOI: 10.1080/21655979.2022.2045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xianfang Pan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Jin Fan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Fang Peng
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li Xiao
- Department of Neurology, Chengdu Shuangliu First People's Hospital, Chengdu, Sichuan Province, China
| | - Zhiyi Yang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Li M, Ning J, Wang J, Yan Q, Zhao K, Jia X. SETD7 regulates chondrocyte differentiation and glycolysis via the Hippo signaling pathway and HIF‑1α. Int J Mol Med 2021; 48:210. [PMID: 34617577 PMCID: PMC8510680 DOI: 10.3892/ijmm.2021.5043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are well adapted to hypoxia and produce more functional extracellular matrix in low oxygen environments in vitro. In our previous study, methyltransferase SET domain containing (SETD)7 regulated chondrocyte activity in hypoxic conditions. However, the precise association between SETD7 and chondrocyte differentiation under low oxygen partial pressure remains unclear. The association between SETD7 and chondrocyte differentiation was studied by silencing SETD7 in chondrocytes in vitro. The results showed that the silencing of SETD7 in ATDC5 cells inhibited the Hippo signaling pathway, decreased Yes-associated protein (YAP) phosphorylation and increased the levels of YAP and hypoxia inducible factor-1α (HIF-1α) in the nucleus. YAP combined with HIF-1α to form a complex that promoted the expression of genes involved in chondrogenic differentiation and the glycolytic pathway. Thus, SETD7 inhibited chondrocyte differentiation and glycolysis via the Hippo signaling pathway. The present study demonstrated that SETD7 was a potential molecular target that maintained the chondrocyte phenotype during cartilage tissue engineering and cartilage-associated disease.
Collapse
Affiliation(s)
- Maoquan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinqiu Ning
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiwei Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Qiqian Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|