1
|
Lohar P, Pal D, Mondal T, Das S, Das P, Ghosh D. Evaluation of male contraceptive efficacy of Caesalpinia pulcherrima (L.) sw. in human and rat: an ex-vivo study. Syst Biol Reprod Med 2025; 71:43-53. [PMID: 39969117 DOI: 10.1080/19396368.2025.2455059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The study focused on the spermicidal and anti-androgenic effects of aqueous-ethanolic (60:40) extract of Caesalpinia pulcherrima leaves (AEECPL) in human and rat samples from the viewpoint of its contraceptive efficacy through ex-vivo study. Six fertile adult males were selected randomly for semen collection. Parallelly sperm samples were collected by epididymal washing from six rats. Testes, epididymis, and liver were dissected from rats. Biological samples were divided into control, 1, 2, and 4 mg/ml of AEECPL exposed groups. Relevant spermiological, steroidogenic enzymes, oxidative stress, and metabolic toxicity sensors were evaluated. All the spermiological sensors were decreased significantly in dose and duration-dependent manners, and the number of comet positive spermatozoa were increased in dose-dependent mode in AEECPL exposed groups against the control both in human and rat. Activities of Δ5,3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD in testis, kinetics of superoxide dismutase both in testis and epididymis were significantly decreased along with the elevation in the level of thiobarbituric acid reactive substances in AEECPL exposed groups. Activities of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, acid phosphatase, and alkaline phosphatase in above mentioned tissues showed no significant difference among the control and AEECPL exposed groups, indicating its non-toxic effects on reproductive and metabolic tissues. The results presenting the prominent contraceptive preventing potentiality of the said extract both in human and rat. The optimal effect was noted at 2 mg/ml dose. In-depth investigations are required through in-vivo studies on animal model to know the genomic mode of action for the execution of male contraceptive activity.
Collapse
Affiliation(s)
- Pampa Lohar
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Dibya Pal
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Tanusree Mondal
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Shibani Das
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| | - Puja Das
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Debidas Ghosh
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
2
|
Saleh R, Sallam H, Elsuity MA, Dutta S, Sengupta P, Nasr A. Antioxidant therapy for infertile couples: a comprehensive review of the current status and consideration of future prospects. Front Endocrinol (Lausanne) 2025; 15:1503905. [PMID: 39850484 PMCID: PMC11756326 DOI: 10.3389/fendo.2024.1503905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes. Antioxidant therapy represents a promising intervention to mitigate the harmful effects of ROS on reproductive health in additions to its easy accessibility, safety, and low cost. Despite several findings suggesting improvements in fertility potential with AOX therapy, the data remains inconclusive regarding optimal dosage and combination, duration of treatment, and the specific patient populations most likely to benefit. In this review, we discuss the role of AOXs in the management of infertile couples, focusing on their biological mechanisms, potential adverse effects, therapeutic efficacy, and clinical applications in improving reproductive outcomes in both natural conception and medically assisted reproduction. Additionally, we highlight the current practice patterns and recommendations for AOX supplementation during the course of infertility treatment. Further, we provide an overview on the limitations of the current research on the topic and insights for future studies to establish standardized AOX regimens and to assess their long-term impact on key outcomes such as live birth rates and miscarriage rates.
Collapse
Affiliation(s)
- Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Hassan Sallam
- Department of Obstetrics and Gynaecology, University of Alexandria, Bab Sharqi, Alexandria Governorate, Alexandria, Egypt
- Alexandria Fertility and IVF Center, Alexandria, Egypt
| | - Mohamad AlaaEldein Elsuity
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ahmed Nasr
- Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Akhigbe TM, Fidelis FB, Adekunle AO, Ashonibare VJ, Akorede BA, Shuaibu MS, Hassan SA, Adegbola CA, Ashonibare PJ, Oladapo OM, Adeogun AE, Bamidele SG, Oyedokun PA, Mukolokota M, Kukoyi OS, Oladipo AA, Adelowo OE, Akangbe MD, Hughes JR, Ricken AM, Culty M, Avellar MCW, Akhigbe RE. Does coenzyme Q10 improve semen quality and circulating testosterone level? a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2025; 15:1497930. [PMID: 39830337 PMCID: PMC11739123 DOI: 10.3389/fphar.2024.1497930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Seminal oxidative stress has been shown to be a key factor in the development of male infertility. However, the benefits of infertility treatments with antioxidants such as coenzyme Q10 (CoQ10) remains controversial. OBJECTIVES The aim of the present study was to assess the effects of CoQ10 supplementation on semen quality, i.e., semen volume, total sperm number, sperm concentration, total sperm motility, percentage of progressive sperm motility and sperm morphology. In addition, the effects of CoQ10 supplementation on circulating testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and inhibin B levels were evaluated. DESIGN A systematic review and a meta-analysis of randomized controlled trials (RCTs) were performed to assess the effects of CoQ10 supplementation on semen quality and serum levels of male reproductive hormones. METHODS We conducted a strategic literature search in the Cochrane, EMBASE, PubMed/MEDLINE, Scopus, and Web of Science databases and collected only RCTs. The data in the collected RCTs were then meta-analyzed according to PRISMA guidelines. RESULTS Out of 2,144 collected studies, only eight were classified eligible. The studies included a total of 877 male subjects; 462 CoQ10-treated and 415 untreated/placebo-treated. We found significantly higher total sperm counts (SMD -13.38 [95% CI: -16.33, -10.43] P< 0.0001), total (SMD -7.26 [95% CI: -10.15, -4.36] P< 0.00001) and progressive motility (SMD -6.386 [95% CI: -10.04, -2.73] P= 0.0006), and normally formed sperm (SMD -1.96 [95% CI: -3.29, -0.62] P= 0.004) in CoQ10-treated male subjects compared with untreated/placebo-treated male subjects. Nonetheless, there was a significant inter-study heterogeneity in these studies. Moreover, significantly higher serum testosterone (SMD -0.59 [95% CI: -0.79, -0.40] P< 0.00001) and inhibin B levels (SMD -0.92 [95% CI: -1.47, -0.37] P= 0.001) were recorded in CoQ10-treated subjects compared to untreated/placebo-treated subjects. In addition, CoQ10 supplementation significantly lowered serum LH (SMD 1.77 [95% CI: 1.26, 2.28] P< 0.00001) and FSH concentrations (SMD 1.60 [95% CI: 1.38, 1.81] P< 0.00001). Interestingly, there was no significant inter-study heterogeneity in the hormonal studies. However, CoQ10 supplementation had no significant effect on semen volume (SMD 0.12 [95% CI: -0.13, 0.37] P= 0.34) and sperm concentration (SMD -6.69 [95% CI: -16.28, 2.90] P= 0.17). CONCLUSION Our study shows that CoQ10 supplementation increases total sperm count, total and progressive sperm motility, and the proportion of normally formed sperm in association with higher serum testosterone and inhibin B levels. Our study therefore supports the view in the literature of a beneficial use of CoQ10 in male infertility treatment. However, further well-designed RCTs with sufficiently large numbers of subjects are required to reach a final conclusion.
Collapse
Affiliation(s)
- Tunmise M. Akhigbe
- Department of Agronomy, Osun State University, Ejigbo campus, Osogbo, Osun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - Fabrael B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Adebayo O. Adekunle
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Victory J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Cardiovascular Regenerative Medicine & Tissue Engineering 3D Lab, Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, United States
| | - Mansur S. Shuaibu
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biochemistry, Dokuz Eylul University, Izmir, Türkiye
| | - Suliat A. Hassan
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - Cecilia A. Adegbola
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Opeyemi M. Oladapo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Adetomiwa E. Adeogun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Department of Physiology, Babcock University, Ilishan Remo, Ilishan Remo, Ogun, Nigeria
| | - Seun G. Bamidele
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiological Sciences, Obafemi Awolowo University, Ife, Osun, Nigeria
| | - Precious A. Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Mungala Mukolokota
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Omotolani S. Kukoyi
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Functional Microbiome Group, Uniklinik Aachen (Universitätsklinikum Aachen), Aachen, Germany
| | - Ayoola A. Oladipo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Olayinka E. Adelowo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Marvelous D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | | | - Albert M. Ricken
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Maria C. W. Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
4
|
Greco F, Guarascio G, Giannetta E, Oranges FP, Quinzi F, Emerenziani GP, Tarsitano MG. The Influence of an Intense Training Regime in Professional and Non-Professional Athletes on Semen Parameters: A Systematic Review. J Clin Med 2025; 14:201. [PMID: 39797284 PMCID: PMC11720830 DOI: 10.3390/jcm14010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Male infertility is influenced by physiological factors like age, as well as lifestyle factors, including physical activity. However, the specific impact of sport activity on semen parameters, and thus on male fertility, remains unclear. Specifically, the aim of this systematic review is to evaluate how an intense regime of training may affect sperm parameters in professional and non-profession athletes. Methods: Studies reporting sperm parameters associated with high training load were included. In April 2024, three electronic databases and literature sources (PubMed, Scopus, and Web of Science) were searched. Quality appraisal was performed independently by three authors using the National Heart, Lung, and Blood Institute Quality Assessment Tools (NHLBI-QAT). Results: Four studies met the inclusion criteria, reporting a total of 156 participants. Sixteen weeks of intensive cycling training produced a significant decrease in seminal volume, sperm concentration, sperm motility, and morphology, with a return to their initial levels, except for sperm morphology and sperm concentration, after at least one week of rest. In addition, in athletes with varicocele, a 6-month stop from sports activity went a long way toward improving sperm concentration and sperm motility. However, DNA fragmentation, a greater presence of round cells, and high numbers of active macrophages were described. At least 30 days improve semen parameters in professional and non-professional athletes. Conclusions: Intensive training could worsen seminal parameters and, consequently, male fertility. However, certainty of evidence is very low, and the results should be interpreted with caution.
Collapse
Affiliation(s)
- Francesca Greco
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Giovanni Guarascio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Francesco Pio Oranges
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
- Department of Neuroscience, Biomedicine and Movement, University of Verona, 37124 Verona, Italy
| | - Federico Quinzi
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Maria Grazia Tarsitano
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, 00166 Rome, Italy;
| |
Collapse
|
5
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 PMCID: PMC11614172 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Kamel AM, Abd El-Hamid IS, Khalifa M, Shaker YM, Rateb SA. Influence of incorporating L-carnitine or Moringa oleifera leaves extract into semen diluent on cryosurvival and in vitro fertilization competence of buck sperm. Anim Reprod Sci 2024; 268:107562. [PMID: 39032362 DOI: 10.1016/j.anireprosci.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
This study aimed at scrutinizing efficiency of incorporating L-carnitine or M. oleifera leaves extract into semen diluent on improving cryopreservation capacity and in vitro fertilization ability of buck spermatozoa. Ejaculates (n=48) were collected by an artificial vagina from six adult Damascus bucks twice weekly during the breeding season (September-October). Following initial evaluation, ejaculates of each collection session from the same bucks were pooled, diluted (1:10) with glycerolized (3 % glycerol, v/v) tris-citric acid egg yolk diluent and were split into three aliquots. The first aliquot served as control, whereas the second and third aliquots were supplemented with 4 μL/mL L-carnitine and 400 μL/mL moringa leaves extract (v/v), respectively. Thereafter, all specimens were processed for cryopreservation and were stored in liquid nitrogen (-196 °C) for 12 months before post-thaw sperm criteria were analyzed by a computer-assisted sperm analysis (CASA) system. Integrity of sperm DNA post thawing was visualized in all semen groups by fluorescence imaging, and in vitro fertilization ability of spermatozoa was also determined. Inclusion of L-carnitine or moringa leaves extract into the diluent improved (P<0.05) post-thaw sperm physical, morphofunctional and kinematic attributes, whilst maintaining (P<0.05) integrity of sperm DNA throughout the freezing and thawing cycle. Consequently, both supplemented groups yielded higher (P<0.05) in vitro fertilization rates compared to control. These results accentuate the protective roles of these antioxidants on buck sperm against consequences of cryopreservation-induced oxidative stress, hence ameliorating post-thaw sperm quality and fertilization competence. This is crucial for successful application of AI and IVF in goat selective breeding programs.
Collapse
Affiliation(s)
- Ahmed M Kamel
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Ibrahim S Abd El-Hamid
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Marwa Khalifa
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Yousri M Shaker
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Sherif A Rateb
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt.
| |
Collapse
|
8
|
Mararajah S, Giribabu N, Salleh N. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H 2O 2)-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117026. [PMID: 37572930 DOI: 10.1016/j.jep.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorophytum borivilianum (C. borivilianum) (CB) has traditionally been used to treat male sexual dysfunctions and has been claimed to possess aphrodisiac properties. AIM OF THE STUDY To investigate the ability of CB to ameliorate H2O2-induced oxidative stress in testes and sperm in mice and prevent H2O2-induced oxidative in human sperm. MATERIALS AND METHODS Oxidative stress was induced in male mice by pre-exposure to 2% H2O2 orally for seven consecutive days, followed by 100 and 200 mg/kg b. w. administration. CB for another seven days. At the end of treatment, mice were sacrificed and testes and epididymal sperm were harvested. Serum FSH, LH and testosterone levels were measured and sperm parameters were obtained. Meanwhile, oxidative stress levels in mice testes and sperm, steroidogenesis and spermatogenesis markers in mice testes were assessed by molecular biological techniques. In another experiment, sperm from thirty-two healthy fertile men were incubated with 200 μM H2O2 and CB (100 and 200 μg/ml) simultaneously and were then evaluated for sperm parameter changes. RESULTS In mice, CB administration ameliorates persistent increases in oxidative stress and decreases in anti-oxidative enzyme levels in testes and sperm following H2O2 pre-exposure. Additionally, CB also helps to ameliorate deterioration in sperm parameters and testicular steroidogenesis and spermatogenesis and restores the serum FSH, LH and testosterone levels near normal in mice. In humans, CB helps to prevent deterioration in sperm parameters following H2O2 exposure. CONCLUSION CB is potentially useful to preserve the male reproductive capability and subsequently male fertility in high oxidative stress conditions.
Collapse
Affiliation(s)
- Selvakumar Mararajah
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ahmed H, Ijaz MU, Riaz M, Jahan S. Sulforaphane inclusion in a freezing medium augments post-thaw motility, functional and biochemical features, and fertility potential of buffalo (Bubalus bubalis) spermatozoa. Res Vet Sci 2023; 158:196-202. [PMID: 37030095 DOI: 10.1016/j.rvsc.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023]
Abstract
Sulforaphane is a natural and highly effective antioxidant safeguarding the reproductive system, and alleviate oxidative stress. This study was designed in order to elaborate L-sulforaphane effect on semen quality, biochemical parameters, and fertility of buffalo (Bubalus bubalis) spermatozoa. Semen was collected from five buffalo bull with artificial vagina (42 °C) three times and evaluated for volume, consistency (color), motility, and sperm concentration. After critical examination, semen was diluted (50 × 106 spermatozoa per ml, 37 °C) in extenders with (2 μM, 5 μM, 10 μM, and, 20 μM) or without (control) sulforaphane, cooled (from 37 to 4 °C), equilibrated (4 °C), filled (straws, 4 °C), and cryopreserved (LN2, -196 °C). Data analysis exhibited that sulforaphane addition in extender augments total motility (%, 10 μM, and 20 μM than control), progressive motility (%), and rapid velocity (%, 20 μM than control), and velocity parameters (average path velocity, μm/s, straight line velocity, μm/s and curved linear velocity, μm/s, 20 μM than control, and 2 μM). Moreover, sulforaphane augments functional features (membrane functionality, mitochondrial potential, and acrosome integrity) of buffalo sperm (20 μM than control). Sulforaphane preserves biochemical features of seminal plasma of buffalo i.e., Calcium (μM), and total antioxidant capacity (μM/L), followed by reduction in lactate dehydrogenase (IU/L), reactive oxygen species (104 RLU/20 min/ 25 million), and lipid peroxidation (μM/ml) in 20 μM than control. Lastly, sulforaphane augments fertility rate of buffalo sperm at 20 μM than control, and 2 μM. Conclusively the existing study revealed that adding L-sulforaphane (20 μM) in a freezing medium augments motilities, kinematics, functional parameters, and fertility rate of buffalo spermatozoa. Correspondingly, sperm favorable biochemical features were also augmented with sulforaphane followed by reduction in oxidative stress parameters. Further studies are highly recommended to define the particular mechanism of action of sulforaphane in augmenting buffalo post-thawed semen quality, and in vitro fertility potential.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan; Department of Animal Sciences, Reproductive Physiology Laboratory, Quaid-i-Azam University, Campus, Islamabad, Pakistan.
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Sarwat Jahan
- Department of Animal Sciences, Reproductive Physiology Laboratory, Quaid-i-Azam University, Campus, Islamabad, Pakistan
| |
Collapse
|
10
|
Agarwal A, Cannarella R, Saleh R, Harraz AM, Kandil H, Salvio G, Boitrelle F, Kuroda S, Farkouh A, Rambhatla A, Zini A, Colpi G, Gül M, Kavoussi P, Hamoda TAAAM, Ko E, Calik G, Toprak T, Pinggera GM, Park HJ, Ghayda RA, Minhas S, Busetto GM, Bakırcıoğlu ME, Kadioglu A, Chung E, Russo GI, Calogero AE, Ambar RF, Jayasena CN, Shah R. Impact of Antioxidant Therapy on Natural Pregnancy Outcomes and Semen Parameters in Infertile Men: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World J Mens Health 2023; 41:14-48. [PMID: 36102104 PMCID: PMC9826914 DOI: 10.5534/wjmh.220067] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Seminal oxidative stress (OS) is a recognized factor potentially associated with male infertility, but the efficacy of antioxidant (AOX) therapy is controversial and there is no consensus on its utility. Primary outcomes of this study were to investigate the effect of AOX on spontaneous clinical pregnancy, live birth and miscarriage rates in male infertile patients. Secondary outcomes were conventional semen parameters, sperm DNA fragmentation (SDF) and seminal OS. MATERIALS AND METHODS Literature search was performed using Scopus, PubMed, Ovid, Embase, and Cochrane databases. Only randomized controlled trials (RCTs) were included and the meta-analysis was conducted according to PRISMA guidelines. RESULTS We assessed for eligibility 1,307 abstracts, and 45 RCTs were finally included, for a total of 4,332 infertile patients. We found a significantly higher pregnancy rate in patients treated with AOX compared to placebo-treated or untreated controls, without significant inter-study heterogeneity. No effects on live-birth or miscarriage rates were observed in four studies. A significantly higher sperm concentration, sperm progressive motility, sperm total motility, and normal sperm morphology was found in patients compared to controls. We found no effect on SDF in analysis of three eligible studies. Seminal levels of total antioxidant capacity were significantly higher, while seminal malondialdehyde acid was significantly lower in patients than controls. These results did not change after exclusion of studies performed following varicocele repair. CONCLUSIONS The present analysis upgrades the level of evidence favoring a recommendation for using AOX in male infertility to improve the spontaneous pregnancy rate and the conventional sperm parameters. The failure to demonstrate an increase in live-birth rate, despite an increase in pregnancy rates, is due to the very few RCTs specifically assessing the impact of AOX on live-birth rate. Therefore, further RCTs assessing the impact of AOX on live-birth rate and miscarriage rate, and SDF will be helpful.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Global Andrology Forum, Moreland Hills, OH, USA.
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Ahmed M Harraz
- Department of Urology, Mansoura University Urology and Nephrology Center, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | | | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment and Development, Pari. Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Shinnosuke Kuroda
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ala'a Farkouh
- American Center for Reproductive Medicine, Global Andrology Forum, Moreland Hills, OH, USA
| | - Amarnath Rambhatla
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI, USA
| | - Armand Zini
- Division of Urology, Department of Surgery, McGill University, Montreal, QC, Canada
| | | | - Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Gokhan Calik
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Suks Minhas
- Division of Surgery, Department of Surgery and Cancer, Imperial College, London, UK
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Ospedali Riuniti of Foggia, Foggia, Italy
| | | | - Ates Kadioglu
- Section of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rafael F Ambar
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, Brazil
| | - Channa N Jayasena
- Department of Reproductive Endocrinology and Andrology, Imperial College London, London, UK
- Department of Andrology, Hammersmith & St. Mary's Hospitals, London, UK
| | - Rupin Shah
- Division of Andrology, Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
11
|
Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res 2022; 36:4299-4324. [PMID: 36123613 DOI: 10.1002/ptr.7620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a term used to describe phenomena connected to the dysfunction of various tissue damage due to reperfusion after ischemic injury. While I/R may result in systemic inflammatory response syndrome or multiple organ dysfunction syndrome, there is still a long way to improve therapeutic outcomes. A number of cellular metabolic and ultrastructural alterations occur by prolonged ischemia. Ischemia increases the expression of proinflammatory gene products and bioactive substances within the endothelium, such as cytokines, leukocytes, and adhesion molecules, even as suppressing the expression of other "protective" gene products and substances, such as thrombomodulin and constitutive nitric oxide synthase (e.g., prostacyclin, nitric oxide [NO]). Curcumin is the primary phenolic pigment derived from turmeric, the powdered rhizome of Curcuma longa. Numerous studies have shown that curcumin has strong antiinflammatory and antioxidant characteristics. It also prevents lipid peroxidation and scavenges free radicals like superoxide anion, singlet oxygen, NO, and hydroxyl. In our study, we highlight the mechanisms of protective effects of curcumin against I/R injury in various organs.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Boeri L, Lucignani G, Jannello LMI, Turetti M, Fulgheri I, Silvani C, Gadda F, Viganò P, Somigliana E, Montanari E. Clinically Meaningful Improvements in Sperm DNA Fragmentation Severity in Infertile Men Treated with Superoxide Dismutase Supplementation: A Single-Center Experience. J Clin Med 2022; 11:jcm11216540. [PMID: 36362768 PMCID: PMC9656306 DOI: 10.3390/jcm11216540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background. Antioxidants are commonly used for the treatment of idiopathic male infertility. Previous studies have shown that antioxidants are able to improve sperm quality, but little is known about their impact on sperm DNA fragmentation (SDF). Preliminary findings showed that superoxide-dismutase (SOD)-based antioxidant plus hydroxytyrosol and carnosol (FertiPlus® SOD) therapy was associated with SDF improvement in a small cohort of infertile men. Therefore, we aimed to assess rates of and predictors of semen parameters and SDF improvements in infertile men treated with FertiPlus® SOD therapy (SOD+) or with other antioxidants without SOD (SOD−) in the real-life setting. Methods. Data from 60 consecutive infertile men with baseline SDF ≥ 30% and treated with SOD+ or SOD− for at least three months were analyzed. Clinical parameters and serum hormones were collected. Sperm parameters and SDF were requested at baseline and after SOD+ or SOD− treatment. Clinically meaningful SDF change after treatment was defined as SDF improvement >20% compared to baseline. Propensity score matching was performed to adjust for baseline differences between groups. Descriptive statistics were used to compare clinical and hormonal characteristics between SOD+ and SOD− groups. Semen characteristics were compared before and after treatment. Logistic regression models investigated the association between clinical variables and SDF improvement. Results. Groups were similar in terms of clinical, serum hormones and semen parameters at baseline after matching. Compared to baseline, sperm progressive motility (17 (10−36)% vs. 27 (12−41)%) and normal morphology (2 (1−6)% vs. 4 (2−6)%) significantly improved after SOD+ treatment (all p < 0.01), but not after SOD−. SDF values significantly improved after treatment in both groups, compared to the baseline evaluation (all p < 0.01). However, SDF values were lower after SOD+ than SOD− treatment (30 (22−36)% vs. 37 (31−42)%, p = 0.01). Similarly, a clinically meaningful improvement in SDF at follow-up was more frequently found after SOD+ than SOD− treatment (76.7% vs. 20.0%, p = 0.001). Multivariable logistic regression analysis showed that SOD+ treatment (OR 5.4, p < 0.001) was an independent predictor of clinically meaningful SDF improvement, after accounting for age and baseline FSH values. Conclusions. This cross-sectional study showed that, in a cohort of primary infertile men with SDF ≥ 30%, SOD-based treatment was significantly effective in improving SDF compared to antioxidants without SOD. Approximately 80% of men treated with SOD+ achieved clinically meaningful improvement in SDF after three months of treatment. Sperm progressive motility and normal morphology also improved after SOD+ therapy but not after SOD−. These results suggest that SOD+ treatment could be considered an effective option for the management of idiopathic infertile men with elevated SDF.
Collapse
Affiliation(s)
- Luca Boeri
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-55034501; Fax: +39-02-50320584
| | - Gianpaolo Lucignani
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Matteo Turetti
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Fulgheri
- Department of Vascular Surgery, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo Silvani
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Franco Gadda
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Viganò
- Infertility Unit, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edgardo Somigliana
- Infertility Unit, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
13
|
Garcia-Segura S. The importance of incorporating sperm DNA fragmentation testing in male infertility diagnostic routine. Transl Androl Urol 2022; 11:1371-1373. [PMID: 36386265 PMCID: PMC9641062 DOI: 10.21037/tau-22-572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
| |
Collapse
|
14
|
The effect of acupuncture on oxidative stress: A systematic review and meta-analysis of animal models. PLoS One 2022; 17:e0271098. [PMID: 36084019 PMCID: PMC9462787 DOI: 10.1371/journal.pone.0271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction Oxidative stress is involved in the occurrence and development of multiple diseases. Acupuncture shows an excellent clinical efficacy in practical application but its mechanism remains unclear. This systematic review and meta-analysis was aimed at assessing the effect of acupuncture on oxidative stress in animal models. Methods PubMed, Embase, and Web of Science database were retrieved for randomized controlled trials about acupuncture on oxidative stress in animal models from inception to August 2021. Two reviewers independently screened and extracted articles according to inclusion and exclusion criteria. We used the mean difference (MD)/standardized mean difference (SMD) to perform an effect size analysis and selected fixed-effect or random-effect models to pool the data, depending on a 95% confidence interval (CI). Results A total of 12 studies comprising 125 samples were included in the quantitative meta-analysis. Compared with sham acupuncture, acupuncture (manual acupuncture, electropuncture, and laser acupuncture) reduced the level of malondialdehyde (SMD, −3.03; CI, −4.40, −1.65; p < 0.00001) and increased the levels of superoxide dismutase (SMD, 3.39; CI, 1.99, 4.79; p < 0.00001), glutathione peroxidase (SMD, 2.21; CI, 1.10, 3.32; p < 0.00001), and catalase (SMD, 2.80; CI, 0.57, 5.03; p = 0.01). Conclusion This meta-analysis indicated that acupuncture can regulate oxidative stress by lowering the lipid peroxidation and activating the antioxidant enzyme system. In consideration of heterogeneity between studies, future studies should be performed by complying with strict standards and increasing sample size in animal experiments to reduce bias.
Collapse
|
15
|
Juanpanich T, Suttirojpattana T, Parnpai R, Vutyavanich T. The relationship between reactive oxygen species, DNA fragmentation, and sperm parameters in human sperm using simplified sucrose vitrification with or without triple antioxidant supplementation. Clin Exp Reprod Med 2022; 49:117-126. [PMID: 35698774 PMCID: PMC9184879 DOI: 10.5653/cerm.2021.05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/04/2022] Open
Abstract
Objective This study examined whether the addition of triple antioxidants (3A)—10 µM acetyl-L-carnitine, 10 µM N-acetyl-L-cysteine, and 5 µM α-lipoic acid—in freezing-thawing medium during human sperm cryopreservation using the sucrose vitrification (SuV) and liquid nitrogen vapor (Vapor) techniques could improve post-thaw survival of spermatozoa. Methods We analyzed 30 samples from healthy human sperm donors. Each sample was allocated into one of five groups: fresh control, SuV, SuV+3A, Vapor, and Vapor+3A. The sperm motility, morphology, viability, intracellular and extracellular reactive oxygen species (ROS) levels, and sperm DNA fragmentation (SDF) were evaluated. Results The cryopreserved spermatozoa had significantly reduced percentages of motility (p<0.05) and viability (p<0.05). Antioxidant supplementation non-significantly improved these parameters (p>0.05). No significant differences were found in sperm morphology between the fresh and frozen-thawed groups (p>0.05). After freezing, the extracellular ROS levels in the frozen-thawed groups were significantly higher (p<0.05) than in the fresh group. However, we did not find any differences in intracellular ROS parameters among these groups (p>0.05). The SDF was higher in the SuV and Vapor groups than in the fresh group, but without statistical significance (p=0.075 and p=0.077, respectively). Conclusion Cryopreservation had detrimental effects on sperm motility, viability, and extracellular ROS levels, without changing the morphology or intracellular ROS levels. Antioxidant supplementation was slightly effective in preventing SDF in frozen-thawed spermatozoa.
Collapse
Affiliation(s)
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Teraporn Vutyavanich
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Corresponding author: Teraporn Vutyavanich Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand Tel: +66-53-21-7204 Fax: +66-53-21-7205 E-mail:
| |
Collapse
|
16
|
Agarwal A, Finelli R, Selvam MKP, Leisegang K, Majzoub A, Tadros N, Ko E, Parekh N, Henkel R, Durairajanayagam D, Colpi GM, Cho CL, Sallam HN, Park HJ, Saleh R, Micic S, Ambar RF, Zini A, Tremellen K, Alvarez JG, Palani A, Arafa M, Gava MM, Jindal S, Amar E, Kopa Z, Moein MR, Busetto GM, Sengupta P, Kavoussi P, Maldonado I, Fikri J, Borges E, Martinez M, Bojovic D, Rajmil O, Aydos K, Parekattil S, Marmar JL, Sefrioui O, Jungwirth A, Peña MGR, Cordts EB, Elbardisi H, Mostafa T, Sabbaghian M, Sadighi Gilani MA, Morimoto Y, Alves MG, Spasic A, Kenic U, Ramsay J, Akande EO, Oumeziane A, Dozortsev D, Chung E, Bell EG, Allegra A, Tanos V, Fiadjoe M, Gurgan T, Abou-Abdallah M, Al-Rumaih H, Oborna I, Arab H, Esteves S, Amer M, Kadioglu A, Yuzko O, Korsak V, Shah R. A Global Survey of Reproductive Specialists to Determine the Clinical Utility of Oxidative Stress Testing and Antioxidant Use in Male Infertility. World J Mens Health 2021; 39:470-488. [PMID: 33831977 PMCID: PMC8255391 DOI: 10.5534/wjmh.210025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The use of antioxidants is common practice in the management of infertile patients. However, there are no established guidelines by professional societies on antioxidant use for male infertility. MATERIALS AND METHODS Using an online survey, this study aimed to evaluate the practice pattern of reproductive specialists to determine the clinical utility of oxidative stress (OS) testing and antioxidant prescriptions to treat male infertility. RESULTS Responses from 1,327 participants representing 6 continents, showed the largest participant representation being from Asia (46.8%). The majority of participants were attending physicians (59.6%), with 61.3% having more than 10 years of experience in the field of male infertility. Approximately two-thirds of clinicians (65.7%) participated in this survey did not order any diagnostic tests for OS. Sperm DNA fragmentation was the most common infertility test beyond a semen analysis that was prescribed to study oxidative stress-related dysfunctions (53.4%). OS was mainly tested in the presence of lifestyle risk factors (24.6%) or sperm abnormalities (16.3%). Interestingly, antioxidants were prescribed by 85.6% of clinicians, for a duration of 3 (43.7%) or 3-6 months (38.6%). A large variety of antioxidants and dietary supplements were prescribed, and scientific evidence were mostly considered to be modest to support their clinical use. Results were not influenced by the physician's age, geographic origin, experience or training in male infertility. CONCLUSIONS This study is the largest online survey performed to date on this topic and demonstrates 1) a worldwide understanding of the importance of this therapeutic option, and 2) a widely prevalent use of antioxidants to treat male infertility. Finally, the necessity of evidence-based clinical practice guidelines from professional societies is highlighted.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA.
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, South Africa
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | | | | | - Chak Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Hassan N Sallam
- Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Sava Micic
- Uromedica Polyclinic, Andrology Department, Belgrade, Serbia
| | - Rafael F Ambar
- Sexual and Reproductive Medicine, Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo Andre, Brazil
| | - Armand Zini
- Department of Surgery, McGill University, St. Mary's Hospital, Montreal, QC, Canada
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, South Australia
| | | | - Ayad Palani
- Department of Biochemistry, College of Medicine, University of Garmian, Kalar, Iraq
| | - Mohamed Arafa
- American Center for Reproductive Medicine, Cleveland Clinic, Ohio, USA
- Hamad Medical Corporation, Doha, Qatar
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marcello M Gava
- Sexual and Reproductive Medicine, Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo Andre, Brazil
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Edouard Amar
- Cabinet D'Andrologie Victor Hugo, American Hospital of Paris Reproductive Center, Paris, France
| | - Zsolt Kopa
- Andrology Centre, Department of Urology, Semmelweis University, Budapest, Hungary
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia Policlinico Riuniti of Foggia, Foggia, Italy
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | | | - Jamal Fikri
- IVF Unit, Al Boustane Clinic, Rabat, Morocco
| | - Edson Borges
- Fertility Medical Group, Sapientiae Institute, São Paulo, Brazil
| | - Marlon Martinez
- Department of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | | | - Osvaldo Rajmil
- Deparment of Andrology, Fundacio Puigvert, Barcelona, Spain
| | - Kaan Aydos
- Department of Urology, University of Ankara, Ankara, Turkey
| | - Sijo Parekattil
- Avant Concierge Urology & University of Central Florida, Winter Garden, FL, USA
| | - Joel L Marmar
- Honorary Staff of Cooper University Hospital, Camden, NJ, USA
| | | | | | | | - Emerson B Cordts
- Instituto Ideia Fertil-Human Reproduction Centre-Faculdade de Medicina do ABC, Sao Paulo, Brazil
| | | | - Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | | | | | - Eric Chung
- Department of Urology, University of Queensland, Brisbane, Australia
| | | | - Adolfo Allegra
- ANDROS Day Surgery Clinic, Reproductive Medicine Unit, Palermo, Italy
| | - Vasilios Tanos
- Department of Obstetrics and Gynecology, University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Timur Gurgan
- Department of Obstetrics and Gynecology, Bahcesehir University, Istanbul, Turkey
| | - Michel Abou-Abdallah
- Middle East Fertility Society, Canadian Foundation for Reproductive Medicine, Lebanon
| | - Hazem Al-Rumaih
- Reproductive Medicine Unit, New Jahra Hospital, Ministry of Health, Al Jahra, Kuwait
| | | | - Hesham Arab
- RMU Dr. Arab Medical Center, Jeddah, Saudi Arabia
| | - Sandro Esteves
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
| | - Medhat Amer
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ates Kadioglu
- Section of Andrology, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Oleksandr Yuzko
- Department of Obstetrics and Gynecology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Vladislav Korsak
- International Centre for Reproductive Medicine, Saint-Petersburg, Russia
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
17
|
Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S. Coenzyme Q10, oxidative stress, and male infertility: A review. Clin Exp Reprod Med 2021; 48:97-104. [PMID: 34078005 PMCID: PMC8176150 DOI: 10.5653/cerm.2020.04175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.
Collapse
Affiliation(s)
- Ahmed T. Alahmar
- Department of Medical Physiology, College of Medicine, University of Babylon, Iraq
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University Teaching Hospital Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University Teaching Hospital Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Malaysia
| | - Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Malaysia
| |
Collapse
|
18
|
Shahedi A, Talebi AR, Mirjalili A, Pourentezari M. Protective effects of curcumin on chromatin quality, sperm parameters, and apoptosis following testicular torsion-detorsion in mice. Clin Exp Reprod Med 2021; 48:27-33. [PMID: 33648042 PMCID: PMC7943345 DOI: 10.5653/cerm.2020.03853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Objective The chief outcome of testicular torsion in clinical and experimental contexts is testicular ischemia. Curcumin, a compound with anti-inflammatory and antioxidant properties, has fascinated researchers and clinicians for its promise in the treatment of fertility diseases. Methods Thirty-five fully grown male mice were randomly classified into five groups: control, sham, testicular torsion, treatment group 1 (testicular torsion+short-term curcumin), and treatment group 2 (testicular torsion+long-term curcumin). Thirty-five days later, spermatozoa from the right cauda epididymis were analyzed with regard to count and motility. Toluidine blue (TB), aniline blue (AB), and chromomycin A3 (CMA3) staining assays were used to evaluate the sperm chromatin integrity. In addition, the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) test was used to assess apoptosis. Result Treatment group 1 exhibited a remarkably elevated sperm count compared to the testicular torsion group. Additionally, notably lower sperm motility was found in the testicular torsion group compared to the control, treatment 1, and treatment 2 groups. Staining (CMA3, AB, and TB) and the TUNEL test indicated significantly greater testicular torsion in the torsion group compared to the control group (p<0.05). The data also revealed notably lower results of all sperm chromatin assays and lower apoptosis in both treatment groups relative to the testicular torsion group (p<0.05). Significantly elevated (p<0.05) AB and TB results were noted in treatment group 1 compared to treatment group 2. Conclusion Curcumin can compensate for the harmful effects of testicular ischemia and improve sperm chromatin quality in mice.
Collapse
Affiliation(s)
- Abbas Shahedi
- Department of Biology and Anatomical Sciences, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Department of Biology and Anatomical Sciences, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Reproductive Biology, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aghdas Mirjalili
- Department of Biology and Anatomical Sciences, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Pourentezari
- Department of Biology and Anatomical Sciences, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
19
|
Erukainure OL, Atolani O, Banerjee P, Abel R, Pooe OJ, Adeyemi OS, Preissner R, Chukwuma CI, Koorbanally NA, Islam MS. Oxidative testicular injury: effect of l-leucine on redox, cholinergic and purinergic dysfunctions, and dysregulated metabolic pathways. Amino Acids 2021; 53:359-380. [DOI: 10.1007/s00726-021-02954-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|
20
|
Sharma A, Minhas S, Dhillo WS, Jayasena CN. Male infertility due to testicular disorders. J Clin Endocrinol Metab 2021; 106:e442-e459. [PMID: 33295608 PMCID: PMC7823320 DOI: 10.1210/clinem/dgaa781] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Male infertility is defined as the inability to conceive following 1 year of regular unprotected intercourse. It is the causative factor in 50% of couples and a leading indication for assisted reproductive techniques (ART). Testicular failure is the most common cause of male infertility, yet the least studied to date. EVIDENCE ACQUISITION The review is an evidence-based summary of male infertility due to testicular failure with a focus on etiology, clinical assessment, and current management approaches. PubMed-searched articles and relevant clinical guidelines were reviewed in detail. EVIDENCE SYNTHESIS/RESULTS Spermatogenesis is under multiple levels of regulation and novel molecular diagnostic tests of sperm function (reactive oxidative species and DNA fragmentation) have since been developed, and albeit currently remain as research tools. Several genetic, environmental, and lifestyle factors provoking testicular failure have been elucidated during the last decade; nevertheless, 40% of cases are idiopathic, with novel monogenic genes linked in the etiopathogenesis. Microsurgical testicular sperm extraction (micro-TESE) and hormonal stimulation with gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors are recently developed therapeutic approaches for men with the most severe form of testicular failure, nonobstructive azoospermia. However, high-quality clinical trials data is currently lacking. CONCLUSIONS Male infertility due to testicular failure has traditionally been viewed as unmodifiable. In the absence of effective pharmacological therapies, delivery of lifestyle advice is a potentially important treatment option. Future research efforts are needed to determine unidentified factors causative in "idiopathic" male infertility and long-term follow-up studies of babies conceived through ART.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Channa N Jayasena
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| |
Collapse
|
21
|
Ahmed H, Jahan S, Riaz M, Khan BT, Ijaz MU. Epigallocatechin-3-gallate (EGCG) addition as an antioxidant in a cryo-diluent media improves microscopic parameters, and fertility potential, and alleviates oxidative stress parameters of buffalo spermatozoa. Cryobiology 2020; 97:101-109. [PMID: 33010294 DOI: 10.1016/j.cryobiol.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
The disparity between the endogenous antioxidants concentration and free radicals in spermatozoa results in reactive oxygen species (ROS) generation. In this prospect, epigallocatechin-3-gallate (EGCG) preserves vigorous antioxidant features. Current study explored the influence of EGCG in a cryo-diluent media on microscopic parameters, oxidative stress parameters, and fertility potential of buffalo spermatozoa during cryopreservation. Concisely, collected semen from three donor bulls for four times were then evaluated for volume, motility, concentrations and then dilution in a cryo-diluent media with different concentrations of EGCG (EGCG-0 = control; EGCG-50 = 50 μM, EGCG-100 = 100 μM, EGCG-200 = 200 μM, and EGCG-300 = 300 μM) at 37 °C, cooled to 4 °C in 2 h, equilibrated for 4 h at 4 °C, and cryopreserved. At post-thawing, Computer-Assisted Sperm motion Analysis motilities (total and progressive, %) and rapid velocity (%), plasma membrane functionality, supravital plasma membrane integrity, and mitochondrial potential (%) were found higher (P < 0.05) in EGCG-200, and EGCG-300 than control, whereas average-path, straight-line, and curved-linear velocities (μm/sec), and acrosome integrity (%) were recorded higher in EGCG-300 than control. Further, comet length (μm), and tail length (μm), LPO (lipid peroxidation, μM/mL), and apoptosis-like changes (%) in spermatozoa were significantly decreased in EGCG-300 than control. Seminal plasma antioxidant enzymes activities (glutathione peroxidase, U/mL, and superoxide dismutase, U/mL) were increased with EGCG-300 than control. Moreover, EGCG-300 addition in a cryo-diluent media improves the fertility potential (%) of buffalo spermatozoa. In a nutshell, the inclusion of EGCG-300 in a cryo-diluent media enhances post-thaw microscopic parameters, and fertility potential, whereas decreases oxidative stress parameters in buffalo spermatozoa.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa (KP), Pakistan; Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Bakht Tarin Khan
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa (KP), Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
22
|
Cito G, Picone R, Fucci R, Del Popolo G, Cocci A, Gemma L, Lombardi G, Minervini A, Carini M, Natali A, Coccia ME. Reproductive Outcomes in Infertile Men With Spinal Cord Injury (SCI): A Retrospective Case-Control Analysis. Urology 2020; 141:82-88. [DOI: 10.1016/j.urology.2020.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
|
23
|
Ali M, Martinez M, Parekh N. Are antioxidants a viable treatment option for male infertility? Andrologia 2020; 53:e13644. [PMID: 32427374 DOI: 10.1111/and.13644] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is caused by an imbalance between ROS and antioxidants, which plays a significant role in the pathophysiology of many human diseases. There is extensive evidence highlighting the role of oxidative stress in male infertility due to elevated levels of sperm DNA fragmentation and abnormal semen parameters. The use of antioxidants is a potential therapeutic option to reduce ROS and improve semen quality. The appeal is that antioxidants can be easily obtained over the counter and are considered all-natural and therefore healthy. The hypothesis has been that by decreasing oxidative stress, antioxidants may be used for the treatment of male infertility. While initial studies of antioxidant supplementation suggested a beneficial role in the management of male subfertility, additional research has questioned the benefit of these therapies. The focus of this article is to present recent evidence assessing the viability of antioxidant therapy in the treatment of male infertility.
Collapse
Affiliation(s)
- Marwan Ali
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marlon Martinez
- Department of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
24
|
Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, Elbardisi H. Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants (Basel) 2020; 9:E219. [PMID: 32155908 PMCID: PMC7139646 DOI: 10.3390/antiox9030219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Antioxidants are used in the empirical treatment of infertile men. The aim of this study was to evaluate the effects of antioxidant therapy on conventional semen parameters and advanced sperm function tests in men seeking fertility treatment. A total of 148 infertile men of unknown etiology were divided into idiopathic (n = 119) and unexplained male infertility (UMI; n = 29). All participants were treated with the antioxidant supplement 'FH PRO for Men' for a period of three months. Compared with pretreatment results, there was a significant improvement in conventional semen parameters including sperm concentration, total and progressive motility and normal morphology, and seminal oxidation reduction potential (ORP), and sperm DNA fragmentation (SDF) in idiopathic infertile men. The changes were more prominent in idiopathic infertile men positive for ORP and SDF. UMI patients showed an improvement in progressive motility, ORP, and SDF after antioxidant treatment. Statistical analysis revealed that the efficacy of FH PRO for Men was significant in idiopathic male infertility compared with UMI. Treatment of idiopathic male infertility patients with the FH PRO for Men antioxidant regimen for three months resulted in a significant improvement in conventional semen parameters and sperm function. Therefore, FH PRO for Men offers promise for the medical treatment of idiopathic male infertility.
Collapse
Affiliation(s)
- Mohamed Arafa
- Male Infertility Unit, Urology Department, Hamad General Hospital, 00974 Doha, Qatar; (A.M.); (H.E.)
- Urology Department, Weill Cornell Medical-Qatar, 00974 Doha, Qatar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
- Andrology Department, Cairo University, 11562 Cairo, Egypt
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
| | - Ahmad Majzoub
- Male Infertility Unit, Urology Department, Hamad General Hospital, 00974 Doha, Qatar; (A.M.); (H.E.)
- Urology Department, Weill Cornell Medical-Qatar, 00974 Doha, Qatar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (M.K.P.S.); (S.B.); (R.H.)
- Department of Medical Bioscience, University of the Western Cape, 7535 Bellville, South Africa
| | - Haitham Elbardisi
- Male Infertility Unit, Urology Department, Hamad General Hospital, 00974 Doha, Qatar; (A.M.); (H.E.)
- Urology Department, Weill Cornell Medical-Qatar, 00974 Doha, Qatar
| |
Collapse
|
25
|
Alamu O, Rado M, Ekpo O, Fisher D. Differential Sensitivity of Two Endothelial Cell Lines to Hydrogen Peroxide Toxicity: Relevance for In Vitro Studies of the Blood-Brain Barrier. Cells 2020; 9:cells9020403. [PMID: 32050666 PMCID: PMC7072657 DOI: 10.3390/cells9020403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress (OS) has been linked to blood–brain barrier (BBB) dysfunction which in turn has been implicated in the initiation and propagation of some neurological diseases. In this study, we profiled, for the first time, two endothelioma cell lines of mouse brain origin, commonly used as in vitro models of the blood–brain barrier, for their resistance against oxidative stress using viability measures and glutathione contents as markers. OS was induced by exposing cultured cells to varying concentrations of hydrogen peroxide and fluorescence microscopy/spectrometry was used to detect and estimate cellular glutathione contents. A colorimetric viability assay was used to determine changes in the viability of OS-exposed cells. Both the b.End5 and bEnd.3 cell lines investigated showed demonstrable content of glutathione with a statistically insignificant difference in glutathione quantity per unit cell, but with a statistically significant higher capacity for the b.End5 cell line for de novo glutathione synthesis. Furthermore, the b.End5 cells demonstrated greater oxidant buffering capacity to higher concentrations of hydrogen peroxide than the bEnd.3 cells. We concluded that mouse brain endothelial cells, derived from different types of cell lines, differ enormously in their antioxidant characteristics. We hereby recommend caution in making comparisons across BBB models utilizing distinctly different cell lines and require further prerequisites to ensure that in vitro BBB models involving these cell lines are reliable and reproducible.
Collapse
Affiliation(s)
- Olufemi Alamu
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
- Anatomy Department, Ladoke Akintola University of Technology, Ogbomoso 210241, Nigeria
| | - Mariam Rado
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
| | - Okobi Ekpo
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
| | - David Fisher
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7530, South Africa; (O.A.); (M.R.); (O.E.)
- Correspondence: ; Tel.: +27-21-959-2185
| |
Collapse
|
26
|
Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2019; 8:53-81. [DOI: 10.1111/andr.12724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic Referral Center for Male Reproduction Campinas Brazil
- Department of Surgery (Division of Urology) University of Campinas (UNICAMP) Campinas Brazil
- Faculty of Health Aarhus University Aarhus Denmark
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences University of Modena and Reggio Emilia Modena Italy
- Unit of Endocrinology Department of Medical Specialties Azienda Ospedaliero Universitaria Modena Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences University of Modena and Reggio Emilia Modena Italy
- Unit of Endocrinology Department of Medical Specialties Azienda Ospedaliero Universitaria Modena Italy
| |
Collapse
|
27
|
Cito G, Becatti M, Natali A, Fucci R, Picone R, Cocci A, Falcone P, Criscuoli L, Mannucci A, Argento FR, Bertocci F, Serni S, Carini M, Fiorillo C, Coccia ME. Redox status assessment in infertile patients with non-obstructive azoospermia undergoing testicular sperm extraction: A prospective study. Andrology 2019; 8:364-371. [PMID: 31654557 DOI: 10.1111/andr.12721] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/06/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress (OS) is one of the most prevalent causes of sperm damage, through the toxic effects of endogenously generated hydrogen peroxide, superoxide anion, and hydroxyl radicals. Peripheral leukocytes represent a feasible model for studying the pathophysiology of OS-mediated homeostasis, which can be responsible for cell dysfunction and cell injury. OBJECTIVE To evaluate the redox status in patients with non-obstructive azoospermia (NOA), establishing the potential role exerted by reactive oxygen species (ROS) in the genesis of testicular secretory injury. MATERIAL AND METHODS From May 2018 to March 2019, 39 patients were enrolled in this prospective single-center cohort study and divided into two groups. Group 1 included 19 patients with NOA, and Group 2 included 20 normozoospermic men, partners of women with infertility tubal factor. All patients underwent serum blood tests. NOA underwent testicular sperm extraction (TeSE). ROS production (in lymphocytes, monocytes, and granulocytes) was assessed by fluorescence-activated cell sorting (FACS) analysis. Plasma oxidative stress was evaluated by lipid peroxidation markers (MDA) and total antioxidant capacity (TAC) both assessed by fluorometric techniques. RESULTS Mean lymphocyte ROS production resulted 967.0 ± 224.5 vs 728.0 ± 98.0 (NOA vs Controls, P < .001), monocyte ROS resulted 2102.5 ± 517.5 vs 1253 ± 171 (P < .001), and granulocyte ROS were 2366.5 ± 595.4 vs 1751.0 ± 213.0 (P < .001). Significant increases plasma lipid peroxidation markers were found in NOA patients compared with controls (2.7 ± 0.8 vs 0.37 ± 0.2 nmol/mL, P < .001). Significant decreased TAC was evident in NOA compared with controls (13.4 ± 3.9 vs 3.0 ± 0.2 µmol/mL Trolox equivalents, P < .001). No significant differences were found in blood leukocyte subpopulations ROS production, plasma lipid peroxidation, and TAC comparing groups (positive vs negative sperm retrieval, P > .05). CONCLUSION ROS production can be directly related to disorders of spermatogenesis, leading to severe conditions of male infertility, including azoospermia.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Patrizia Falcone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Luciana Criscuoli
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Flavia R Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesco Bertocci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria E Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Tesarik J. Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA of human spermatozoa can be subject to various kinds of modifications acquired throughout life. Put simply, two basic types of acquired sperm DNA modifications can be distinguished: genetic and epigenetic. Genetic modifications cause alterations of the DNA sequence and mainly result from the formation of breakpoints leading to sperm DNA fragmentation. Epigenetic modifications include a vast spectrum of events that influence the expression of different genes without altering their DNA sequence. Both the genetic and the epigenetic modifications of sperm DNA can negatively influence embryonic development, cause miscarriages, and be the origin of different health problems for the offspring. As to sperm DNA fragmentation, reliable diagnostic methods are currently available. On the other hand, the detection of potentially harmful epigenetic modifications in spermatozoa is a much more complicated issue. Different treatment options can be chosen to solve problems associated with sperm DNA fragmentation. Some are relatively simple and noninvasive, based on oral treatments with antioxidants and other agents, depending on the underlying cause. In other cases, the recourse to different micromanipulation-assisted in vitro fertilisation techniques is necessary to select spermatozoa with minimal DNA damage to be injected into oocytes. The treatment of cases with epigenetic DNA modifications is still under investigation. Preliminary data suggest that some of the techniques used in cases of extensive DNA fragmentation can also be of help in those of epigenetic modifications; however, further progress will depend on the availability of more reliable diagnostic methods with which it will be possible to evaluate the effects of different therapeutic interventions.
Collapse
|
29
|
Esteves SC. Interventions to Prevent Sperm DNA Damage Effects on Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:119-148. [PMID: 31301050 DOI: 10.1007/978-3-030-21664-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Excessive oxidation and antioxidant imbalance resulting from several conditions may cause sperm DNA damage, which, in turn, affect male fertility, both natural and assisted. Sperm DNA damage transferred to the embryo might also affect the health of offspring. Several conditions associated with excessive oxidative stress are modifiable by the use of specific treatments, lifestyle changes, and averting exposure to environmental/occupational toxicants. Here, we discuss the strategies to reduce sperm DNA damage with a focus on clinical and surgical interventions.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, SP, Brazil. .,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, Ramasamy R, Ko E, Tremellen K, Esteves S, Majzoub A, Alvarez JG, Gardner DK, Jayasena CN, Ramsay JW, Cho CL, Saleh R, Sakkas D, Hotaling JM, Lundy SD, Vij S, Marmar J, Gosalvez J, Sabanegh E, Park HJ, Zini A, Kavoussi P, Micic S, Smith R, Busetto GM, Bakırcıoğlu ME, Haidl G, Balercia G, Puchalt NG, Ben-Khalifa M, Tadros N, Kirkman-Browne J, Moskovtsev S, Huang X, Borges E, Franken D, Bar-Chama N, Morimoto Y, Tomita K, Srini VS, Ombelet W, Baldi E, Muratori M, Yumura Y, La Vignera S, Kosgi R, Martinez MP, Evenson DP, Zylbersztejn DS, Roque M, Cocuzza M, Vieira M, Ben-Meir A, Orvieto R, Levitas E, Wiser A, Arafa M, Malhotra V, Parekattil SJ, Elbardisi H, Carvalho L, Dada R, Sifer C, Talwar P, Gudeloglu A, Mahmoud AMA, Terras K, Yazbeck C, Nebojsa B, Durairajanayagam D, Mounir A, Kahn LG, Baskaran S, Pai RD, Paoli D, Leisegang K, Moein MR, Malik S, Yaman O, Samanta L, Bayane F, Jindal SK, Kendirci M, Altay B, Perovic D, Harlev A. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J Mens Health 2019; 37:296-312. [PMID: 31081299 PMCID: PMC6704307 DOI: 10.5534/wjmh.190055] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022] Open
Abstract
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA.
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Medical Bioscience, University of the Western Cape, Cape Town, South Africa
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Sheryl T Homa
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, Australia
| | - Sandro Esteves
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ahmad Majzoub
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
- Department of Urology, Hamad Medical Corporation and Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Juan G Alvarez
- Centro Androgen, La Coruña, Spain and Harvard Medical School, Boston, MA, USA
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Channa N Jayasena
- Section of Investigative Medicine, Imperial College London, UK
- Department of Andrology, Hammersmith Hospital, London, UK
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Shatin, Hong Kong
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - James M Hotaling
- Department of Urology, University of Utah, Salt Lake City, UT, USA
| | - Scott D Lundy
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jaime Gosalvez
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Sava Micic
- Uromedica Polyclinic, Kneza Milosa, Belgrade, Serbia
| | - Ryan Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | | | | | - Gerhard Haidl
- Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Umberto I Hospital, Ancona, Italy
| | - Nicolás Garrido Puchalt
- IVI Foundation Edificio Biopolo - Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - Moncef Ben-Khalifa
- University Hospital, School of Médicine and PERITOX Laboratory, Amiens, France
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jackson Kirkman-Browne
- Centre for Human Reproductive Science, IMSR, College of Medical & Dental Sciences, The University of Birmingham Edgbaston, UK
- The Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Drive, Edgbaston, UK
| | - Sergey Moskovtsev
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Daniel Franken
- Department of Obstetrics & Gynecology, Andrology Unit Faculties of Health Sciences, Tygerberg Hospital, Tygerberg, South Africa
| | - Natan Bar-Chama
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kazuhisa Tomita
- IVF Japan Group, Horac Grand Front Osaka Clinic, Osaka, Japan
| | | | - Willem Ombelet
- Genk Institute for Fertility Technology, Genk, Belgium
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of Florence, Florence, Italy
| | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Marlon P Martinez
- Section of Urology, University of Santo Tomas Hospital, Manila, Philippines
| | | | | | - Matheus Roque
- Origen, Center for Reproductive Medicine, Rio de Janeiro, Brazil
| | | | - Marcelo Vieira
- Division of Urology, Infertility Center ALFA, São Paulo, Brazil
- Head of Male Infertility Division, Andrology Department, Brazilian Society of Urology, Rio de Janeiro, Brazil
| | - Assaf Ben-Meir
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Hebrew-University Hadassah Medical Center, Jerusalem, Israel
| | - Raoul Orvieto
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Tarnesby-Tarnowski Chair for Family Planning and Fertility Regulation, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eliahu Levitas
- Soroka University Medical Center, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
| | - Amir Wiser
- IVF Unit, Meir Medical Center, Kfar Sava, Israel
- Sackler Medicine School, Tel Aviv University, Tel Aviv, Israel
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
| | - Vineet Malhotra
- Department of Andrology and Urology, Diyos Hospital, New Delhi, India
| | - Sijo Joseph Parekattil
- PUR Clinic, South Lake Hospital, Clermont, FL, USA
- University of Central Florida, Orlando, FL, USA
| | | | - Luiz Carvalho
- Baby Center, Institute for Reproductive Medicine, São Paulo, Brazil
- College Institute of Clinical Research and Teaching Development, São Paulo, Brazil
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Christophe Sifer
- Department of Reproductive Biology, Hôpitaux Universitaires Paris Seine Saint-Denis, Bondy, France
| | - Pankaj Talwar
- Department of Reproductive Medicine and Embryology, Manipal Hospital, New Delhi, India
| | - Ahmet Gudeloglu
- Department of Urology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmed M A Mahmoud
- Department of Endocrinology/ Andrology, University Hospital Ghent, Ghent, Belgium
| | - Khaled Terras
- Department of Reproductive Medicine, Hannibal International Clinic, Tunis, Tunisia
| | - Chadi Yazbeck
- Department of Obstetrics, Gynecology and Reproductive Medicine, Pierre Cherest and Hartman Clinics, Paris, France
| | - Bojanic Nebojsa
- Clinic of Urology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | - Ajina Mounir
- Department of Embryology, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, OH, USA
| | - Rishma Dhillon Pai
- Department of Obstetrics and Gynaecology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Donatella Paoli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Cape Town, South Africa
| | | | | | - Onder Yaman
- Department of Urology, School of Medicine, University of Ankara, Ankara, Turkey
| | - Luna Samanta
- Redox Biology Laboratory, Department of Zoology and Center of Excellence in Environment and Public Health, Ravenshaw University, Cutrack, India
| | - Fouad Bayane
- Marrakech Fertility Institute, Marrakech, Morocco
| | | | - Muammer Kendirci
- Department of Urology, Istinye University Faculty of Medicine, Liv Hospital Ulus, Istanbul, Turkey
| | - Baris Altay
- Department of Urology, Ege University School of Medicine, İzmir, Turkey
| | | | - Avi Harlev
- Fertility and IVF Unit, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
31
|
Katigbak RD, Turchini GM, de Graaf SP, Kong L, Dumée LF. Review on Sperm Sorting Technologies and Sperm Properties toward New Separation Methods via the Interface of Biochemistry and Material Science. ACTA ACUST UNITED AC 2019; 3:e1900079. [PMID: 32648656 DOI: 10.1002/adbi.201900079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Indexed: 01/14/2023]
Abstract
Successful fertilization in mammals requires spermatozoa to efficiently traverse the female reproductive tract to meet the egg. This process naturally selects high quality sperm cells for fertilization, but when artificial reproductive technologies are used such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination, other methods of sperm selection are required. Currently, technology enables sperm sorting based on motility, maturity as defined by zeta potential or hyaluronic acid binding site expression, absence of apoptotic factors, appropriate morphology, and even sex. This review summarizes current knowledge on all known methods of sperm cell sorting, compares their efficiency, and discusses the advantages and limitations of each technique. Scope for further refinement and improvement of current methods are discussed as is the potential to utilize a variety of materials to innovate new methods of sperm separation.
Collapse
Affiliation(s)
- Roberto D Katigbak
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| | - Giovanni M Turchini
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Burwood, 3125, Victoria, Australia
| | - Simon P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, 2006, New South Wales, Australia
| | - Lingxue Kong
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia
| |
Collapse
|
32
|
Bader R, Ibrahim JN, Moussa M, Mourad A, Azoury J, Azoury J, Alaaeddine N. In vitro
effect of autologous platelet‐rich plasma on H
2
O
2
‐induced oxidative stress in human spermatozoa. Andrology 2019; 8:191-200. [DOI: 10.1111/andr.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- R. Bader
- Mount Lebanon HospitalAzoury IVF Clinic Beirut Lebanon
- Faculty of Medicine Regenerative Medicine and Inflammation Laboratory Saint‐Joseph University Beirut Lebanon
| | - J. N. Ibrahim
- Faculty of Public Health II Medical Laboratory Department Lebanese University Beirut Lebanon
| | - M. Moussa
- Faculty of Medicine Regenerative Medicine and Inflammation Laboratory Saint‐Joseph University Beirut Lebanon
| | - A. Mourad
- Department of Obstetrics and Gynecology American University of Beirut Medical Center Beirut Lebanon
| | - J. Azoury
- OB‐GYN Department Inova Fairfax Hospital Falls Church VA USA
| | - J. Azoury
- Mount Lebanon HospitalAzoury IVF Clinic Beirut Lebanon
| | - N. Alaaeddine
- Faculty of Medical Sciences Neuroscience Research CenterLebanese University Beirut Lebanon
| |
Collapse
|
33
|
Herrero MB, Lusignan MF, Son WY, Sabbah M, Buckett W, Chan P. ICSI outcomes using testicular spermatozoa in non-azoospermic couples with recurrent ICSI failure and no previous live births. Andrology 2019; 7:281-287. [PMID: 30734539 DOI: 10.1111/andr.12591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The use of testicular over ejaculated spermatozoa for ICSI has been presented as an alternative to overcome infertility in men with poor semen parameters or high levels of sperm DNA fragmentation. OBJECTIVE To evaluate the efficacy of testicular ICSI outcomes in couples with no previous live birth and recurrent ICSI failure using ejaculated spermatozoa by comparison to the outcomes of couples with similar history of recurrent ICSI using ejaculated spermatozoa only. MATERIALS AND METHODS A total of 145 couples undergoing ejaculated or testicular ICSI cycles with no previous live births and with at least two previous failed ICSI cycles with ejaculated spermatozoa were evaluated retrospectively. ICSI was performed either with ejaculated (E-ICSI) or with testicular (T-ICSI) spermatozoa. Semen parameters and sperm DNA quality were assessed prior to the oocyte collection day. Primary outcomes included cumulative live birth and pregnancy rates. Secondary analysis included percentage of DNA fragmentation in ejaculated spermatozoa (SCSA® and TUNEL). RESULTS Patients undergoing T-ICSI (n = 77) had a significantly higher clinical pregnancy rate/fresh embryo transfer (ET) (27.9%; 17/61) and cumulative live birth rate (23.4%; 15/64) compared to patients using E-ICSI (n = 68) (clinical pregnancy rate/fresh ET: 10%; 6/60 and cumulative live birth rate: 11.4%; 7/61). Further, T-ICSI yield significantly better cumulative live birth rates than E-ICSI for men with high TUNEL (≥36%) (T-ICSI: 20%; 3/15 vs. E-ICSI: 0%; 0/7, p < 0.025), high SCSA® (≥25%) scores (T-ICSI: 21.7%; 5/23 vs. E-ICSI: 9.1%; 1/11, p < 0.01), or abnormal semen parameters (T-ICSI: 28%; 7/25 vs. E-ICSI: 6.7%; 1/15, p < 0.01). CONCLUSIONS The use of testicular spermatozoa for ICSI in non-azoospermic couples with no previous live births, recurrent ICSI failure, and high sperm DNA fragmentation yields significantly better live birth outcomes than a separate cohort of couples with similar history of ICSI failure entering a new ICSI cycle with ejaculated spermatozoa.
Collapse
Affiliation(s)
- M B Herrero
- MUHC Reproductive Centre, McGill University Health Centre, Montreal, QC, Canada
| | - M F Lusignan
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - W-Y Son
- MUHC Reproductive Centre, McGill University Health Centre, Montreal, QC, Canada
| | - M Sabbah
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - W Buckett
- MUHC Reproductive Centre, McGill University Health Centre, Montreal, QC, Canada
| | - P Chan
- MUHC Reproductive Centre, McGill University Health Centre, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Zare S, Hossein Dabbaghmanesh M, Noorafshan A, Koohpeyma F, Bakhshayeshkaram M, Montazeri-Najafabady N. Protective effect of vitamin E and vitamin C alone and in combination on testicular damage induced by sodium metabisulphite in rats: A stereological study. Andrologia 2018; 51:e13193. [PMID: 30478946 DOI: 10.1111/and.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
The existing investigation was directed to consider the protective role of vitamin C and E alone and in combination on sodium metabisulphite-induced damage on testicular. Experimental animals were received sodium metabisulphite (520 mg/kg) alone and in combination with vitamin E (100 mg/kg), vitamin C (100 mg/kg) and vitamin E + C, while the control groups received 0.9% saline solution and olive oil (the solvent of the vitamin E). Finally, the changes in the testis histology were examined stereologically. Lipid peroxidation was assessed through the measurement of malondialdehyde (MDA) levels in testis tissues. Also, serum testosterone concentrations were measured. The results indicated that 80%-90% (spermatogonia A and B, spermatocyte and Leydig) and 40% of the Sertoli cells were missed in the rats that received sodium metabisulphite, respectively, compared with the controls. The co-supplementation of vitamin E with vitamin C significantly decreased MDA (p = 0.006) and increased testosterone (p = 0.001) concentrations in the rats received SMB which were as much as control and olive groups. Co-supplementation of vitamin E and vitamin C due to their synergistic effects could be an appropriate strategy in preventing testicular from sodium metabisulphite-induced damage.
Collapse
Affiliation(s)
- Shiva Zare
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
35
|
|
36
|
Esteves SC, Agarwal A, Cho CL, Majzoub A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol 2017; 6:S734-S760. [PMID: 29082207 PMCID: PMC5643602 DOI: 10.21037/tau.2017.08.20] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Sperm DNA fragmentation (SDF) is recognized as a leading cause of male infertility because it can impair the paternal genome through distinct pathophysiological mechanisms. Current evidence supports SDF as a major factor in the pathophysiology of several conditions, including varicocele, unexplained infertility, assisted reproductive technology failure, and environmental lifestyle factors, although the mechanisms involved have not been fully described yet. Measurement of the levels of DNA fragmentation in semen provides valuable information on the integrity of paternal chromatin and may guide therapeutic strategies. A recently published clinical practice guideline (CPG) highlighted how to use the information provided by SDF testing in daily practice, which triggered a series of commentaries by leading infertility experts. These commentaries contained an abundance of information and conflicting views about the clinical utility of SDF testing, which underline the complex nature of SDF. Methods A search of papers published in response to the CPG entitled “Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios” was performed within the Translational Andrology and Urology (TAU) website (http://tau.amegroups.com/). The start and end dates for the search were May 2017 and August 2017, respectively. Each commentary meeting our inclusion criteria was rated as “supportive without reservation”, “supportive with reservation”, “not supportive” or “neutral”. We recorded whether articles discussed either SDF characteristics as a laboratory test method or clinical scenarios, or both. Subsequently, we extracted the particulars from each commentary and utilized the ‘Strengths-Weaknesses-Opportunities-Threats’ (SWOT) analysis to understand the perceived advantages and drawbacks of SDF as a specialized sperm function method in clinical practice. Results Fifty-eight fertility experts from six continents and twenty-two countries contributed commentaries. Overall, participants (87.9%; n=51) were supportive of the recommendations provided by the CPG on the utility of SDF testing based on clinical scenarios. The majority of participants made explicit remarks about both the clinical scenarios and SDF assays’ characteristics. Among ‘not supportive’ and ‘supportive with reservation’ participants, 75% (n=30/40) and 77.5% (n=31/40) expressed concerns related to technical limitations of SDF testing methods and clinical utility of the test in one or more clinical scenarios discussed in the CPG, respectively. The SWOT analysis revealed that the CPG provides a reasonable evidence-based proposal for integration of SDF testing in the routine daily practice. It also uncovered gaps of knowledge and threats limiting the widespread application of SDF in everyday practice, thus allowing the identification of opportunities to further refine SDF testing and its clinical utility. Conclusions The understanding of the role of SDF in male infertility requires an in-depth analysis of the multifactorial pathophysiological processes and the theories involved. The SWOT analysis allowed an objective evaluation of CPG on the clinical utility of SDF testing based on clinical scenarios and its accompanying commentaries written by global experts in all possible angles. Implementation of SDF testing in the clinic may not only increase the outcome of ART but more importantly improve the health of both fathers to be and resulting offspring.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, SP, Brazil.,Division of Urology, Department of Surgery, Universtity of Campinas (UNICAMP), SP, Brazil.,Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- Division of Urology, Department of Surgery, Kwong Wah Hospital, Hong Kong, China
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|