1
|
Lu Y, Zhao X, Yuan M, Zhao M, Liu K, Zhang M, Qiu X, Yu X, Liu X, Wei D, Xie J, Cheng Z. KYNU Expression Promotes Cisplatin Resistance in Esophageal Cancer. J Cancer 2024; 15:2475-2485. [PMID: 38577600 PMCID: PMC10988315 DOI: 10.7150/jca.93229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Chemotherapy resistance is a barrier to effective cancer prognoses. Cisplatin (CDDP) resistance is a major challenge for esophageal cancer (EC) therapy. A deeper understanding of the fundamental mechanisms of cisplatin resistance and improved targeting strategies are required in clinical settings. This study was performed to identify and characterize a marker of cisplatin resistance in EC cells. Method: KYSE140 and Eca-109 cells were subjected to escalating concentrations of cisplatin, resulting in the development of cisplatin-resistant KYSE140/CDDP and Eca-109/CDDP cell lines, respectively. RNA Sequencing (RNA-seq) was utilized to screen for the genes exhibiting differential expression between cisplatin-resistant and parental cells. Reverse transcription quantitative PCR was conducted to assess gene expression, and western blotting was employed to analyze protein levels. A sphere-formation assay was performed to validate tumor cell stemness. Cell counting kit-8 (CCK-8) experiments were conducted to confirm the sensitivity of cells to cisplatin. We examined the relationship between target genes and the clinicopathological features of patients with EC. Furthermore, the expression of target genes in EC tissues was evaluated via western blotting and fluorescence probe in situ hybridization (FISH). Results: KYNU was upregulated in cisplatin-resistant EC cells (KYSE140/CDDP and Eca-109/CDDP cells) and in EC tissues compared to that in the respective parental cell lines (KYSE140 and Eca-109 cells) and non-carcinoma tissues. Downregulation of KYNU increased cell sensitivity to cisplatin and suppressed tumor stemness, whereas abnormal KYNU expression had the opposite effect. KYNU expression was correlated with the expression of tumor stemness-associated factors (SOX2, Nanog, and OCT4) and the tumor size. Conclusions: KYNU may promote drug resistance in EC by regulating cancer stemness, and could serve as a biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Yu Lu
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
- Department of pharmacy, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Xianyang Zhao
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Mingliang Yuan
- Department of Gastroenterology, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Ming Zhao
- Department of pharmacy, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Kaisheng Liu
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Xiaoyan Qiu
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Xuechun Yu
- Department of Gastroenterology, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Xinliang Liu
- Department of Endocrinology, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Dongping Wei
- Department of Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jun Xie
- Department of Clinical Research Center, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
- Department of Inspection, Xuyi People's Hospital, Affiliated Xuyi Hospital of Yangzhou University Medical College, Jiangsu, China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
2
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
3
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
4
|
Mortezaee K, Majidpoor J. Alternative immune checkpoints in immunoregulatory profile of cancer stem cells. Heliyon 2023; 9:e23171. [PMID: 38144305 PMCID: PMC10746460 DOI: 10.1016/j.heliyon.2023.e23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Tumor-mediated bypass of immune checkpoint inhibitor (ICI) therapy with anti-programmed death-1 (PD-1), anti-programmed death-ligand 1 (PD-L1, also called B7-H1 or CD274) or anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a challenge of current years in the area of cancer immunotherapy. Alternative immune checkpoints (AICs) are molecules beyond the common PD-1, PD-L1 or CTLA-4, and are upregulated in patients who show low/no ICI responses. These are members of B7 family including B7-H2 (ICOS-L), B7-H3 (CD276), B7-H4 (B7x), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7-H6, HHLA2 (B7-H5/B7-H7) and catabolic enzymes like indoleamine 2,3-dioxygenase 1 (IDO1), and others that are also contributed to the regulation of tumor immune microenvironment (TIME). There is also strong evidence supporting the implication of AICs in regulation of cancer stemness and expanding the population of cancer stem cells (CSCs). CSCs display immunoregulatory capacity and represent multiple immune checkpoints either on their surface or inside. Besides, they are active promoters of resistance to the common ICIs. The aim of this review is to investigate interrelations between AICs with stemness and differentiation profile of cancer. The key message of this paper is that targeted checkpoints can be selected based on their impact on CSCs along with their effect on immune cells. Studies published so far mainly focused on immune cells as a target for anti-checkpoints. Ex vivo engineering of extracellular vesicles (EVs) equipped with CSC-targeted anti-checkpoint antibodies is without a doubt a key therapeutic target that can be under consideration in future research.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
5
|
Fan X, Huang J, Hu B, Zhou J, Chen L. Tumor-expressed B7-H3 promotes vasculogenic mimicry formation rather than angiogenesis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:8729-8741. [PMID: 37129607 DOI: 10.1007/s00432-023-04790-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Vasculogenic mimicry (VM), an alternative microvascular circulation independent of angiogenesis, is formed by aggressive cancer cells. Tumor-expressed B7-H3 has been reported to promote VM formation in hepatocellular carcinoma and modulate angiogenesis in breast cancer and colorectal cancer. However, its effects on VM generation and angiogenesis in non-small cell Lung cancer (NSCLC) remained to be elucidated. METHODS CRISPR/Cas9-mediated B7-H3 knockout (KO) was conducted in NSCLC A549 and H3255 cells. The expression of VM-related proteins, including vascular endothelial (VE)-cadherin and matrix metalloproteinase 14 (MMP14), and the secretion of vascular endothelial growth factor (VEGF) were measured by western blotting and chemiluminescence assay in both B7-H3 KO and mock-edited A549 and H3255 cells. To examine VM formation, a three-dimensional (3D) culture model was used for B7-H3 KO and mock A549 and H3255 cells. For in vivo analysis, xenograft mice models were established using B7-H3 KO and mock-edited A549 cells, and immunohistochemical (CD31) and histochemical (periodic acid-Schiff, PAS) double staining were performed to identify VM and endothelial vessels in tumor tissues. Finally, specific signaling inhibitors were used to analyze B7-H3-induced signaling pathway responsible for VE-cadherin and MMP14 expression and VM generation. RESULTS Higher expression of B7-H3 was associated with a worse prognosis and more advanced T-category in NSCLC. CRISPR/Cas9-mediated B7-H3 KO in A549 and H3255 cells led to decreased expression of VE-cadherin and MMP14; however, the secretion of VEGF by the two cell lines remained unchanged. In the 3D cell culture model, both B7-H3 KO A549 and H3255 cells showed a significant reduction in the formation of capillary-like tubular structures compared to mock-edited cells. In the in vivo xenograft model, mock-edited A549 cells formed excessive PAS+ CD31- VM channels, while B7-H3 KO restrained VM formation in the xenograft tumors. However, no significant differences were found in CD31+ endothelial vessels between xenografts formed by B7-H3 KO and mock-edited A549 cells. Finally, we analyzed the signaling pathway responsible for B7-H3-induced VM formation and found that selective inhibition of the phosphoinositide 3-kinase(PI3K)/protein kinase B (AKT) hyperactivation by LY294002 was associated with decreased expression of MMP14 and VE-cadherin, and in vitro VM formation by both A549 and H3255 cells. CONCLUSIONS Tumor-expressed B7-H3 acts via PI3K/AKT signaling pathway to promote VM formation by NSCLC cells while bears no effects on angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Xingyu Fan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfeng Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingqi Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Seo YR, Lee J, Ryu HS, Kim EG, Kim SH, Jeong J, Jung H, Jung Y, Kim HB, Jo YH, Kim YD, Jin MS, Lee YY, Kim KM, Yi EC. Lateral interactions between CD276 and CD147 are essential for stemness in breast cancer: a novel insight from proximal proteome analysis. Sci Rep 2023; 13:14242. [PMID: 37648771 PMCID: PMC10469185 DOI: 10.1038/s41598-023-41416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Oncogenic cell-surface membrane proteins contribute to the phenotypic and functional characteristics of cancer stem cells (CSCs). We employed a proximity-labeling proteomic approach to quantitatively analyze the cell-surface membrane proteins in close proximity to CD147 in CSCs. Furthermore, we compared CSCs to non-CSCs to identify CSC-specific cell-surface membrane proteins that are closely interact with CD147 and revealed that lateral interaction between CD147 and CD276 concealed within the lipid raft microdomain in CSCs, confers resistance to docetaxel, a commonly used chemotherapy agent for various cancer types, including metastatic breast cancer. Moreover, we investigated the clinical relevance of CD147 and CD276 co-expression in HER2+ breast cancer (BC) and triple-negative breast cancer patients who underwent chemotherapy. We observed poor disease-free survival and Overall survival rates in patients of CD147 and CD276 (p = 0.04 and 0.08, respectively). Subsequent immunohistochemical analysis in independent cohorts of HER2+ BC support for the association between co-expression of CD147 and CD276 and a poor response to chemotherapy. Collectively, our study suggests that the lateral interaction between CD147 and its proximal partners, such as CD276, may serve as a poor prognostic factor in BC and a predictive marker for the critical phenotypic determinant of BC stemness.
Collapse
Affiliation(s)
- Yu Ri Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Junghyeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - EunHee G Kim
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyun Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jieun Jeong
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - YeoJin Jung
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeon Hui Jo
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeong Dong Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Sun Jin
- Department of Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong Yook Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kristine M Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea.
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea.
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer 2023; 22:43. [PMID: 36859240 PMCID: PMC9979440 DOI: 10.1186/s12943-023-01751-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is a key player in cancer progression. This immune checkpoint molecule is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. In addition to its immune checkpoint function, B7-H3 has been linked to tumor cell proliferation, metastasis, and therapeutic resistance. Furthermore, its drastic difference in protein expression levels between normal and tumor tissues suggests that targeting B7-H3 with drugs would lead to cancer-specific toxicity, minimizing harm to healthy cells. These properties make B7-H3 a promising target for cancer therapy.Recently, important advances in B7-H3 research and drug development have been reported, and these new findings, including its involvement in cellular metabolic reprograming, cancer stem cell enrichment, senescence and obesity, have expanded our knowledge and understanding of this molecule, which is important in guiding future strategies for targeting B7-H3. In this review, we briefly discuss the biology and function of B7-H3 in cancer development. We emphasize more on the latest findings and their underlying mechanisms to reflect the new advances in B7-H3 research. In addition, we discuss the new improvements of B-H3 inhibitors in cancer drug development.
Collapse
Affiliation(s)
- Ayechew Adera Getu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Lien K, Mayer W, Herrera R, Padilla NT, Cai X, Lin V, Pholcharoenchit R, Palefsky J, Tugizov SM. HIV-1 Proteins gp120 and Tat Promote Epithelial-Mesenchymal Transition and Invasiveness of HPV-Positive and HPV-Negative Neoplastic Genital and Oral Epithelial Cells. Microbiol Spectr 2022; 10:e0362222. [PMID: 36314970 PMCID: PMC9770004 DOI: 10.1128/spectrum.03622-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The incidence of human papillomavirus (HPV)-associated anogenital and oropharyngeal cancer in human immunodeficiency virus (HIV)-infected individuals is substantially higher than in HIV-uninfected individuals. HIV may also be a risk factor for the development of HPV-negative head and neck, liver, lung, and kidney cancer. However, the molecular mechanisms underlying HIV-1-associated increase of epithelial malignancies are not fully understood. Here, we showed that HPV-16-immortalized anal AKC-2 and cervical CaSki epithelial cells that undergo prolonged exposure to cell-free HIV-1 virions or HIV-1 viral proteins gp120 and tat respond with the epithelial-mesenchymal transition (EMT) and increased invasiveness. Similar responses were observed in HPV-16-infected SCC-47 and HPV-16-negative HSC-3 oral epithelial cancer cells that were cultured with these viral proteins. EMT induced by gp120 and tat led to detachment of poorly adherent cells from the culture substratum; these cells remained capable of reattachment, upon which they coexpressed both E-cadherin and vimentin, indicative of an intermediate stage of EMT. The reattached cells also expressed stem cell markers CD133 and CD44, which may play a critical role in cancer cell invasion and metastasis. Inhibition of transforming growth factor (TGF)-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasive activity of HPV-16-immortalized anal and cervical epithelial cells. Collectively, our results suggest that these approaches along with HIV viral suppression with antiretroviral therapy (ART) might be useful to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia. IMPORTANCE HPV-16-immortalized genital and oral epithelial cells and HPV-negative oral cancer cells that undergo prolonged contact with cell-free HIV-1 virions or with viral proteins gp120 and tat respond by becoming more invasive. EMT cells induced by HIV-1 in cultures of HPV-16-immortalized anal and cervical epithelial cells express the stem cell markers CD133 and CD44. These results suggest that the interaction of HIV-1 with neoplastic epithelial cells may lead to their de-differentiation into cancer stem cells that are resistant to apoptosis and anti-cancer drugs. Thus, this pathway may play a critical role in the development of invasive cancer. Inhibition of TGF-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasiveness of HPV-16-immortalized anal and cervical epithelial cells. Taken together, these results suggest that these approaches might be exploited to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wasima Mayer
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Rossana Herrera
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Vicky Lin
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | | | - Joel Palefsky
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
p53 mutants G245S and R337H associated with the Li-Fraumeni syndrome regulate distinct metabolic pathways. Biochimie 2022; 198:141-154. [PMID: 35367578 DOI: 10.1016/j.biochi.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
|