1
|
Ziranu P, Pretta A, Aimola V, Cau F, Mariani S, D’Agata AP, Codipietro C, Rizzo D, Dell’Utri V, Sanna G, Moledda G, Cadoni A, Lai E, Puzzoni M, Pusceddu V, Castagnola M, Scartozzi M, Faa G. CD44: A New Prognostic Marker in Colorectal Cancer? Cancers (Basel) 2024; 16:1569. [PMID: 38672650 PMCID: PMC11048923 DOI: 10.3390/cancers16081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overexpressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit several CSC traits, such as self-renewal, epithelial-mesenchymal transition (EMT) capability, and resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA). The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion, migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer therapy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite instability (MSI) open new research scenarios for developing new strategies in cancer treatment. This review summarises current research regarding the different CD44 isoform structures, their roles, and functions in supporting tumorigenesis and discusses its therapeutic implications.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Valentina Aimola
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (V.A.); (F.C.)
| | - Flaviana Cau
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (V.A.); (F.C.)
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Alessandra Pia D’Agata
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Claudia Codipietro
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Daiana Rizzo
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Veronica Dell’Utri
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Giorgia Sanna
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Giusy Moledda
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Andrea Cadoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Massimo Castagnola
- Proteomics Laboratory, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Zhang Y, Liu Y, Qiu X, Yan B. Concurrent Comparison of the Prognostic Values of Tumor Budding, Tumor Stroma Ratio, Tumor Infiltrating Pattern and Lymphocyte-to-Monocyte Ratio in Colorectal Cancer Patients. Technol Cancer Res Treat 2021; 20:15330338211045826. [PMID: 34658263 PMCID: PMC8521422 DOI: 10.1177/15330338211045826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives: Tumor budding (TB), tumor stroma ratio (TSR), tumor infiltrating pattern (TIP), and preoperative lymphocyte-to-monocyte ratio (LMR) were previously reported to be useful prognostic factors in colorectal cancer (CRC); however, the correlation among these markers and their individual prognostic potency have not been extensively studied. Methods: A cohort of 147 stage I-IV CRC patients was obtained retrospectively, and the patients were divided into subgroups based on low or high TB/TSR/LMR, TIPa (expansile + intermediate) and TIPb (infiltrative) values. The differences in relapse-free survival (RFS) and overall survival (OS) intervals among these subgroups were determined by Kaplan-Meier analysis followed by log-rank tests. The Cox proportional hazard model was applied for the univariate and multivariate analysis of RFS and OS rates. Results:TB, TIP, and LMR, but not TSR, are useful markers for predicting patient survival. Patients with a poor histological grade and large tumor diameter were more likely to present with high TB, TIPb, and low LMR values; in addition, those with advanced T, N, and TNM stages and elevated preoperative CA199 levels had high TB and TIPb levels. TB, TIP, and LMR were significant prognostic factors for the RFS (TB: HR [hazard ratio] = 2.28, 95% CI = 1.30-4.00, P < .01; TIP: HR = 2.60, 95% CI = 1.46-4.60, P < .01; LMR: HR = 0.79, 95% CI = 0.65-0.96, P = .02) and OS (TB: HR = 2.43, 95% CI = 1.32-4.48, P < .01; TIP: HR = 2.49, 95% CI = 1.34-4.63, P < .01; LMR: HR = 0.79, 95% CI = 0.64-0.98, P = .03) intervals. In addition, TB and LMR were independent prognostic factors for the RFS interval (TB: HR = 1.80, 95% CI = 1.01-3.19, P = .05; LMR: HR = 0.80, 95% CI = 0.67-0.96, P = .01), but only LMR was an independent factor for OS rates (HR = 0.80, 95% CI = 0.65-0.98, P = .03). Conclusion: Although TB, TIP, and LMR are useful prognostic markers for CRC, the LMR is likely to be the only independent prognostic factor for both RFS and OS outcomes in practice.
Collapse
Affiliation(s)
- Yingcheng Zhang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, P.R. China
| | - You Liu
- Department of Pathology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Xiaomei Qiu
- Department of Pathology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| |
Collapse
|