1
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
2
|
Pisani F, Spagnoli C. What are the main challenges in the treatment of neonatal hypoxic ischemic encephalopathy? Expert Rev Neurother 2025; 25:121-124. [PMID: 39656883 DOI: 10.1080/14737175.2024.2438649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatric Unit, "Policlinico Umberto I" University Hospital, Rome, Italy
- Child Neuropsychiatric Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neuropsychiatry Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Zhang T, Liu Y, Wang G, Wang Z, Fan X, Shen Y, Liu W, Zhang D, He L, Xie L, Yu T, Liang Y. Evidence of the "hit and run" characteristics of Cerebroprotein Hydrolysate-I in the treatment of neonatal HIE based on pharmacokinetic and pharmacological studies. Int Immunopharmacol 2024; 143:113580. [PMID: 39547013 DOI: 10.1016/j.intimp.2024.113580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the leading cause of neonatal mortality and disability, but its treatment options are very limited and there is an urgent need to further improve treatment outcomes. The present study aims to reveal the therapeutic effects, action pattern, and potential mechanisms of Cerebroprotein hydrolysate-I (CH-I), a mixture of hydrolyzed peptides and amino acids, for the management of HIE. To simulate the complex pathogenesis of HIE more accurately, we innovatively constructed a "triple hit" neonatal HIE rat model. The efficacy of CH-1 was examined in this model, and it was found that CH-I treatment not only significantly improved the behavior and small molecule metabolism disorders of neonatal HIE rats, but also reduced intracerebral neuronal apoptosis, neuroinflammation, and oxidative stress levels. In addition, the neuroprotective effect of CH-I was also confirmed in the hypoxic oligodendrocyte precursor cell model. We innovatively found that CH-I could reverse myelin damage induced by HIE modeling via activating the Wnt/β-catenin signaling pathway. More importantly, a robust quantitative analysis assay for the main peptides in CH-I was developed based on LC-MS/MS system combining Skyline software. Then the pharmacokinetics of the main peptides was studied based on 'relative exposure approach' combining 'mixed calibration curves' strategy. The transient exposure of peptides in vivo indicated that CH-I should exert neuroprotective effects through the "hit and run" pattern.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Ye Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Zhongbo Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Xin Fan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Yun Shen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Wei Liu
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Dianzhui Zhang
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Laipeng He
- Hebei Zhitong Biopharmaceutical Co., Ltd, No. 1, Gucheng, Dingxing County, Hebei Province, 072656, PR China
| | - Lin Xie
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China
| | - Tengjie Yu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China.
| | - Yan Liang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P.R. China.
| |
Collapse
|
4
|
García Arias HF, Porras-Hurtado GL, Estrada-Álvarez JM, Cardona-Ramirez N, Restrepo-Restrepo F, Serrano C, Cárdenas-Peña D, Orozco-Gutiérrez ÁÁ. Therapeutic Hypothermia and Its Role in Preserving Brain Volume in Term Neonates with Perinatal Asphyxia. J Clin Med 2024; 13:7121. [PMID: 39685580 DOI: 10.3390/jcm13237121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Perinatal asphyxia is a major cause of neonatal morbidity and mortality, often resulting in hypoxic-ischemic encephalopathy (HIE) with long-term neurodevelopmental impairments. While therapeutic hypothermia has emerged as a promising intervention to reduce brain damage, its specific impact on key brain structures and long-term neurodevelopmental outcomes remains underexplored. This study aims to evaluate the effects of therapeutic hypothermia on brain volumetry, cortical thickness, and neurodevelopment in term neonates with perinatal asphyxia. Methods: This prospective cohort study enrolled 34 term neonates with perinatal asphyxia, with 12 receiving therapeutic hypothermia and 22 serving as controls without hypothermia. Brain MRI data were analyzed using Infant FreeSurfer to quantify the basal ganglia volumes, gray matter, white matter, cerebellum, cortical gyri, and cortical thickness. Neurodevelopmental outcomes were assessed at 18 and 24 months, using the Bayley Scale III, evaluating the motor, cognitive, and language domains. Genetic analyses, including next-generation sequencing (NGS) and microarray testing, were performed to investigate potential neurodevelopmental markers and confounding factors. Results: Neonates treated with hypothermia demonstrated significantly larger gray and white matter volumes, with a 3.7-fold increase in gray matter (p = 0.025) and a 2.2-fold increase in white matter (p = 0.025). Hippocampal volume increased 3.4-fold (p = 0.032) in the hypothermia group. However, no significant volumetric differences were observed in the cerebellum, thalamus, or other subcortical regions. Moderate correlations were found between white matter volume and cognitive outcomes, but these associations were not statistically significant. Conclusions: Therapeutic hypothermia appears to have region-specific neuroprotective effects, particularly in gray and white matter and the hippocampus, which may contribute to improved neurodevelopmental outcomes. However, the impact was not uniform across all brain structures. Further research is needed, to investigate the long-term benefits and to optimize therapeutic strategies by integrating advanced neuroimaging techniques and genetic insights.
Collapse
Affiliation(s)
| | | | | | | | | | - Carolina Serrano
- Clinica Universitaria, Universidad Pontificia Bolivariana, Medellín 050010, Colombia
| | - David Cárdenas-Peña
- Automatics Research Group, Technologic University of Pereira, Pereira 660003, Colombia
| | | |
Collapse
|
5
|
Jerez Calero A, Contreras Chova F, Benítez Feliponi Á, Azaryah H, Hurtado Suazo JA, Moreno Galdó MF, Molina Carballo A. Pro-inflammatory biomarkers and long term neurological outcomes in hypothermia plus melatonin treated asphyxiated newborns. A preliminary approach. Pediatr Res 2024:10.1038/s41390-024-03742-y. [PMID: 39580594 DOI: 10.1038/s41390-024-03742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVE To evaluate serum neuronal and inflammatory biomarkers in asphyxiated newborns treated with hypothermia alone or hypothermia plus melatonin, and whether biomarkers correlate with neurodevelopmental outcomes. DESIGN A pilot multicentre, randomized, controlled, double blind clinical trial. 25 newborns were recruited. Neonatal neural biomarkers were measured in serum samples at hospital admission (T0), 24 h (T1), 72 hours (T2) and 7-10 days of age (T3). Neurodevelopmental scales were performed at 6 and 18 months. Treated patients received a daily dose of intravenous melatonin, for 3 days. RESULTS In melatonin-treated group, lower plasma levels of GM-CSF, IL-2 and IL-13 at T1 were measured vs placebo-group. We also corroborated, at T2, lower concentrations of GM-CSF, as well as IL-7 and IL-13 at T3. Throughout the study period, we found a significant decrease in GM-CSF concentrations in the treatment group. We have also observed sustained decrease over time of GM-CSF and inflammatory cytokines IL-2, IL-7 and IL-13 correlates with better neurodevelopmental outcomes at 6 and 18 months. CONCLUSIONS In neonates affected by hypoxic-ischemic encephalopathy, the addition of iv melatonin to hypothermia therapy affects plasma biomarker concentration in the first week of life, with a high correlation with long-term neurological prognosis. IMPACT Several plasma cytokines act as inflammatory mediators and biomarkers of hypoxia-ischemia-acquired neonatal brain damage. In animal research, melatonin has been shown to be a safe substance with proven anti-inflammatory and neuroprotective effects. Findings from our clinical trial show that melatonin affects plasma inflammatory biomarker concentration within the first week of life. This effect may be related to long-term neurological prognosis. To date, this is the only clinical trial in human infants including asphyxiated neonates treated with hypothermia and intravenous melatonin. Our study could help design future larger, well-designed clinical trials to clarify its effects in asphyxiated neonates.
Collapse
Affiliation(s)
- Antonio Jerez Calero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
- Department of Pediatrics, Faculty of Medicine. University of Granada, Granada, Spain.
| | | | | | - Hatim Azaryah
- Department of Pediatrics, Faculty of Medicine. University of Granada, Granada, Spain
| | | | | | - Antonio Molina Carballo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Pediatrics, Faculty of Medicine. University of Granada, Granada, Spain
| |
Collapse
|
6
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024; 300:107865. [PMID: 39374780 PMCID: PMC11570493 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes, various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of mRNA translation and turnover, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Cetinkaya M. Neuroprotective treatment options for neonatal hypoxic-ischemic encephalopathy: Therapeutic hypothermia and beyond. GLOBAL PEDIATRICS 2024; 9:100223. [DOI: 10.1016/j.gpeds.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Eldarov C, Starodubtseva N, Shevtsova Y, Goryunov K, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Dried Blood Spot Metabolome Features of Ischemic-Hypoxic Encephalopathy: A Neonatal Rat Model. Int J Mol Sci 2024; 25:8903. [PMID: 39201589 PMCID: PMC11354919 DOI: 10.3390/ijms25168903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia's therapeutic effects. Using a rat model of hypoxic-ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE.
Collapse
Affiliation(s)
- Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
9
|
Zirpoli H, Bernis ME, Sabir H, Manual Kollareth DJ, Hamilton JA, Huang N, Ng J, Sosunov SA, Gaebler B, Ten VS, Deckelbaum RJ. Omega-3 fatty acid diglyceride emulsions as a novel injectable acute therapeutic in neonatal hypoxic-ischemic brain injury. Biomed Pharmacother 2024; 175:116749. [PMID: 38761420 PMCID: PMC11156760 DOI: 10.1016/j.biopha.2024.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE), resulting from a lack of blood flow and oxygen before or during newborn delivery, is a leading cause of cerebral palsy and neurological disability in children. Therapeutic hypothermia (TH), the current standard of care in HIE, is only beneficial in 1 of 7-8 cases. Therefore, there is a critical need for more efficient treatments. We have previously reported that omega-3 (n-3) fatty acids (FA) carried by triglyceride (TG) lipid emulsions provide neuroprotection after experimental hypoxic-ischemic (HI) injury in neonatal mice. Herein, we propose a novel acute therapeutic approach using an n-3 diglyceride (DG) lipid emulsions. Importantly, n-3 DG preparations had much smaller particle size compared to commercially available or lab-made n-3 TG emulsions. We showed that n-3 DG molecules have the advantage of incorporating at substantially higher levels than n-3 TG into an in vitro model of phospholipid membranes. We also observed that n-3 DG after parenteral administration in neonatal mice reaches the bloodstream more rapidly than n-3 TG. Using neonatal HI brain injury models in mice and rats, we found that n-3 DG emulsions provide superior neuroprotection than n-3 TG emulsions or TH in decreasing brain infarct size. Additionally, we found that n-3 DGs attenuate microgliosis and astrogliosis. Thus, n-3 DG emulsions are a superior, promising, and novel therapy for treating HIE.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Maria Eugenia Bernis
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | - Denny Joseph Manual Kollareth
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jesse Ng
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Sergey A Sosunov
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Yang Y, Li Y, Yang W, Yang X, Luo M, Qin L, Zhu J. Protecting effects of 4-octyl itaconate on neonatal hypoxic-ischemic encephalopathy via Nrf2 pathway in astrocytes. J Neuroinflammation 2024; 21:132. [PMID: 38760862 PMCID: PMC11102208 DOI: 10.1186/s12974-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Li
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenyi Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueying Yang
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Man Luo
- Department of Anesthesiology, Shenzhen Cancer Hospital, Shenzhen, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, Liaoning, China.
| | - Junchao Zhu
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Lavrentev SN, Petrova AS, Serova OF, Vishnyakova P, Kondratev MV, Gryzunova AS, Zakharova NI, Zubkov VV, Silachev DN. Ultrasound Diagnosis and Near-Infrared Spectroscopy in the Study of Encephalopathy in Neonates Born under Asphyxia: Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:591. [PMID: 38790586 PMCID: PMC11119551 DOI: 10.3390/children11050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Brain injury resulting from adverse events during pregnancy and delivery is the leading cause of neonatal morbidity and disability. Surviving neonates often suffer long-term motor, sensory, and cognitive impairments. Birth asphyxia is among the most common causes of neonatal encephalopathy. The integration of ultrasound, including Doppler ultrasound, and near-infrared spectroscopy (NIRS) offers a promising approach to understanding the pathology and diagnosis of encephalopathy in this special patient population. Ultrasound diagnosis can be very helpful for the assessment of structural abnormalities associated with neonatal encephalopathy such as alterations in brain structures (intraventricular hemorrhage, infarcts, hydrocephalus, white matter injury) and evaluation of morphologic changes. Doppler sonography is the most valuable method as it provides information about blood flow patterns and outcome prediction. NIRS provides valuable insight into the functional aspects of brain activity by measuring tissue oxygenation and blood flow. The combination of ultrasonography and NIRS may produce complementary information on structural and functional aspects of the brain. This review summarizes the current state of research, discusses advantages and limitations, and explores future directions to improve applicability and efficacy.
Collapse
Affiliation(s)
- Simeon N. Lavrentev
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Anastasia S. Petrova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Olga F. Serova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
| | - Polina Vishnyakova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maxim V. Kondratev
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
| | - Anastasia S. Gryzunova
- The State Budgetary Institution, Moscow Regional Perinatal Center, 143912 Balashikha, Russia; (S.N.L.); (A.S.P.); (O.F.S.); (M.V.K.); (A.S.G.)
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Nina I. Zakharova
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
| | - Victor V. Zubkov
- Research Clinical Institute of Childhood of the Moscow Region, 115093 Moscow, Russia; (N.I.Z.); (V.V.Z.)
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
| | - Denis N. Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia;
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Tsikouras P, Oikonomou E, Bothou A, Kyriakou D, Nalbanti T, Andreou S, Daniilidis A, Peitsidis P, Nikolettos K, Iatrakis G, Nikolettos N. Labor management and neonatal outcomes in cardiotocography categories II and III (Review). MEDICINE INTERNATIONAL 2024; 4:27. [PMID: 38628383 PMCID: PMC11019468 DOI: 10.3892/mi.2024.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The safe care of both mothers and fetuses during labor is a primary goal of all health professionals. The assessment of fetal oxygenation and well-being is a key aspect of perinatal care provided. Fetal heart rate (FHR) auscultation became part of daily obstetric practice in a number of countries during the 20th century and remains a key method of fetal monitoring, particularly in low-risk pregnancies. Cardiotocography (CTG) is the continuous monitoring and recording of the FHR and uterine myometrial activity, making it possible to assess the fetal condition. It therefore plays a critical role in the detection of fetal hypoxia during labor, a condition directly related to short- and long-term complications in the newborn. Herein, particular reference is made to the management of CTG category II and III standards, as well as to the handling of childbirth. In addition, specific FHR patterns are associated with immediate neonatal outcomes based on updated studies conducted worldwide. Finally, the prognostic significance of CTG and its potential as a prospective avenue for further investigation are also highlighted herein. Given that the misinterpretation of CTG findings is the most common cause of medical-legal responsibility, this knowledge field requires more emphasis and attention. The aim of the present review was to further deepen the knowledge on issues that mainly concern the safety and monitoring of pregnant women and fetuses during childbirth.
Collapse
Affiliation(s)
- Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efthimios Oikonomou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Anastasia Bothou
- Midwifery Department of Neonatology, University Hospital Alexandra, 11528 Athens, Greece
| | - Dimimitrios Kyriakou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theopi Nalbanti
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sotirios Andreou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Daniilidis
- 1st Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Panagiotis Peitsidis
- Department of Obstetrics and Gynecology, Helena Venizelou Maternity Hospital, 11521 Athens, Greece
| | - Konstantinos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgios Iatrakis
- Midwifery Department, University of West Attica, 12243 Athens, Greece
| | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
13
|
Curel CJM, Nobeli I, Thornton C. Leflunomide Treatment Does Not Protect Neural Cells following Oxygen-Glucose Deprivation (OGD) In Vitro. Cells 2024; 13:631. [PMID: 38607070 PMCID: PMC11011260 DOI: 10.3390/cells13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) affects 2-3 per 1000 live births in developed countries and up to 26 per 1000 live births in developing countries. It is estimated that of the 750,000 infants experiencing a hypoxic-ischemic event during birth per year, more than 400,000 will be severely affected. As treatment options are limited, rapidly identifying new therapeutic avenues is critical, and repurposing drugs already in clinical use offers a fast-track route to clinic. One emerging avenue for therapeutic intervention in neonatal HI is to target mitochondrial dysfunction, which occurs early in the development of brain injury. Mitochondrial dynamics are particularly affected, with mitochondrial fragmentation occurring at the expense of the pro-fusion protein Optic Atrophy (OPA)1. OPA1, together with mitofusins (MFN)1/2, are required for membrane fusion, and therefore, protecting their function may also safeguard mitochondrial dynamics. Leflunomide, an FDA-approved immunosuppressant, was recently identified as an activator of MFN2 with partial effects on OPA1 expression. We, therefore, treated C17.2 cells with Leflunomide before or after oxygen-glucose deprivation, an in vitro mimic of HI, to determine its efficacy as a neuroprotection and inhibitor of mitochondrial dysfunction. Leflunomide increased baseline OPA1 but not MFN2 expression in C17.2 cells. However, Leflunomide was unable to promote cell survival following OGD. Equally, there was no obvious effect on mitochondrial morphology or bioenergetics. These data align with studies suggesting that the tissue and mitochondrial protein profile of the target cell/tissue are critical for taking advantage of the therapeutic actions of Leflunomide.
Collapse
Affiliation(s)
- Claire J. M. Curel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Irene Nobeli
- School of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|