1
|
Wagner GR, Michaels D. Invited Perspective: Diesel Exhaust and Lung Cancer-Delayed Findings Confirmed, but Consequences Continue. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:81301. [PMID: 37549096 PMCID: PMC10406172 DOI: 10.1289/ehp13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Gregory R. Wagner
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - David Michaels
- Milken Institute School of Public Heath, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Complexity of Respirable Dust Found in Mining Operations as Characterized by X-ray Diffraction and FTIR Analysis. MINERALS 2021. [DOI: 10.3390/min11040383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mineralogical complexity of mine dust complicates exposure monitoring methods for occupational, respirable hazards. Improved understanding of the variability in respirable dust characteristics, e.g., mineral phase occurrence and composition, is required to advance on-site monitoring techniques that can be applied across diverse mining sectors. Principal components analysis (PCA) models were applied separately to XRD and FTIR datasets collected on 130 respirable dust samples from seven mining commodities to explore similarities and differences among the samples. Findings from both PCA models classified limestone, iron, and granite mine samples via their analytical responses. However, the results also cautioned that respirable samples from these commodities may not always fit patterns observed within the model. For example, one unique sample collected in a limestone mine contained no carbonate minerals. Future predictive quantification models should account for unique samples. Differences between gold and copper mine dust samples were difficult to observe. Further investigation suggested that the key to their differentiation by FTIR may lie in the characterization of clays. The results presented in this study provide foundational information for guiding the development of quantification models for respirable mineral hazards in the mining industry.
Collapse
|
3
|
Abstract
Background Different terms are described in the literature that refer to commercial determinants as drivers of ill-health. The aim of the present review was to provide an overview of the commercial determinants of health, through a review of the literature on this subject. The review was conducted in December 2019 and updated in February 2020. Searches were conducted from peer-reviewed scientific articles, commentaries, books, and books chapters, with no restriction in their publication dates and languages. Main body The commercial determinants of health cover three areas. First, they relate to unhealthy commodities that are contributing to ill-health. Secondly, they include business, market and political practices that are harmful to health and used to sell these commodities and secure a favourable policy environment. Finally, they include the global drivers of ill-health, such as market-driven economies and globalisation, that have facilitated the use of such harmful practices. Short conclusion The discussion on the commercial determinants of health offers a unique opportunity to shift the dominant paradigm in public health, where individual behaviours are considered to be driven by inadequate environments. Ill-health, damages to the environment, and health and social inequalities, might be better understood through a commercial determinant lens.
Collapse
Affiliation(s)
- Melissa Mialon
- School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Scammell MK. Trust, Conflict, and Engagement in Occupational Health: North American Epidemiologists Conduct Occupational Study in Communities Affected by Chronic Kidney Disease of Unknown Origin (CKDu). Curr Environ Health Rep 2020; 6:247-255. [PMID: 31630378 DOI: 10.1007/s40572-019-00244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Science has been used as a tool of colonialism, and aspects of science privilege researchers in the global North (USA and Europe). The environmental justice and worker health movements in the USA and globally have influenced aspects of how occupational and environmental health research is conceived and conducted so that it is more equitable. This review provides a case example of research in the area of chronic kidney disease of unknown origin (CKDu). RECENT FINDINGS In the present work, the author describes aspects of community-based participatory research and anti-colonial research that influence a current occupational epidemiology study of CKDu in Mesoamerica among workers in agriculture and non-agricultural industries. The research includes investigators from numerous countries in the global North and South and funding from the US government and corporations. The role of industry in science and the misuse of science by corporate interests remain substantial threats to research integrity. The ability of researchers to navigate potentially conflicting interests with industry and workers, and establish trust within and outside the scientific community, is essential for sustained engagement in longitudinal studies. Trust is about human relationships. It takes time and effort to build and is essential for creating equitable, empowering research relationships.
Collapse
Affiliation(s)
- Madeleine K Scammell
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., T442 West, Boston, MA, 02118, USA.
| |
Collapse
|
5
|
Challenges and Opportunities for Occupational Epidemiology in the Twenty-first Century. Curr Environ Health Rep 2018; 4:319-324. [PMID: 28803393 DOI: 10.1007/s40572-017-0154-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW There are many opportunities and challenges for conducting occupational epidemiologic studies today. In this paper, we summarize the discussion of a symposium held at the Epidemiology in Occupational Health (EPICOH) conference, Chicago 2014, on challenges for occupational epidemiology in the twenty-first century. RECENT FINDINGS The increasing number of publications and attendance at our conferences suggests that worldwide interest in occupational epidemiology has been growing. There are clearly abundant opportunities for new research in occupational epidemiology. Areas ripe for further work include developing improved methods for exposure assessment, statistical analysis, studying migrant workers and other vulnerable populations, the use of biomarkers, and new hazards. Several major challenges are also discussed such as the rapidly changing nature and location of work, lack of funding, and political/legal conflicts. As long as work exists there will be occupational diseases that demand our attention, and a need for epidemiologic studies designed to characterize these risks and to support the development of preventive strategies. Despite the challenges and given the important past contribution in this field, we are optimistic about the importance and continued vitality of the research field of occupational epidemiology.
Collapse
|
6
|
Kim BG, Lee PH, Lee SH, Kim YE, Shin MY, Kang Y, Bae SH, Kim MJ, Rhim T, Park CS, Jang AS. Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:246-56. [PMID: 26922935 PMCID: PMC4773213 DOI: 10.4168/aair.2016.8.3.246] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023]
Abstract
Purpose Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. Methods BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 µg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. Results AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-γ were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-β was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. Conclusions These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model.
Collapse
Affiliation(s)
- Byeong Gon Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Pureun Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Shin Hwa Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young En Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Mee Yong Shin
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yena Kang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seong Hwan Bae
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min Jung Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Choon Sik Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
7
|
Pusateri A, Shrader-Frechette K. Commentary: Flawed scientific-evidence standards delay diesel regulations. Account Res 2015; 22:162-91. [PMID: 25635848 DOI: 10.1080/08989621.2014.956867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Of 188 government-monitored air toxics, diesel particulate matter (DPM) causes seven times more cancer than all the other 187 air toxics combined, including benzene, lead, and mercury. Yet, DPM is the only air toxic not regulated more stringently under the Clean Air Act, as a hazardous air pollutant (HAP). One reason is that regulators use flawed standards of scientific evidence. The article argues (1) that DPM meets all six specified evidentiary criteria, any one of which is sufficient for HAP regulation and (2) that regulators' standards of evidence for denying HAP status to DPM (no DPM unit-risk estimate, inadequate dose-response data, alleged weak mechanistic data) err logically and scientifically, set the evidence bar too high, delay regulation, and allow 21,000 avoidable DPM deaths annually in the U.S.
Collapse
|
8
|
Abstract
In a 2005 paper that has been accessed more than a million times, John Ioannidis explained why most published research findings were false. Here he revisits the topic, this time to address how to improve matters. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- John P. A. Ioannidis
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, United States of America
- Department of Medicine, Stanford Prevention Research Center, Stanford, California, United States of America
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Pearce N, Smith AH. Data sharing: not as simple as it seems. Environ Health 2011; 10:107. [PMID: 22188646 PMCID: PMC3260112 DOI: 10.1186/1476-069x-10-107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/21/2011] [Indexed: 05/15/2023]
Abstract
In recent years there has been a major change on the part of funders, particularly in North America, so that data sharing is now considered to be the norm rather than the exception. We believe that data sharing is a good idea. However, we also believe that it is inappropriate to prescribe exactly when or how researchers should preserve and share data, since these issues are highly specific to each study, the nature of the data collected, who is requesting it, and what they intend to do with it. The level of ethical concern will vary according to the nature of the information, and the way in which it is collected - analyses of anonymised hospital admission records may carry a quite different ethical burden than analyses of potentially identifiable health information collected directly from the study participants. It is striking that most discussions about data sharing focus almost exclusively on issues of ownership (by the researchers or the funders) and efficiency (on the part of the funders). There is usually little discussion of the ethical issues involved in data sharing, and its implications for the study participants. Obtaining prior informed consent from the participants does not solve this problem, unless the informed consent process makes it completely clear what is being proposed, in which case most study participants would not agree. Thus, the undoubted benefits of data sharing does not remove the obligations and responsibilities that the original investigators hold for the people they invited to participate in the study.
Collapse
Affiliation(s)
- Neil Pearce
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Public Health Research, Massey University Wellington Campus, PO Box 756, Wellington, 6140, New Zealand
| | - Allan H Smith
- Division of Epidemiology, School of Public Health,, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Mattingly KA, Klinge CM. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch Toxicol 2011; 86:633-42. [PMID: 22105178 DOI: 10.1007/s00204-011-0778-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 01/05/2023]
Abstract
Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17β-estradiol (E(2)), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E(2), 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E(2) increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects.
Collapse
Affiliation(s)
- Kathleen A Mattingly
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
11
|
Zuo L, Youtz DJ, Wold LE. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation. PLoS One 2011; 6:e23116. [PMID: 21850256 PMCID: PMC3151271 DOI: 10.1371/journal.pone.0023116] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/10/2011] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways.
Collapse
Affiliation(s)
- Li Zuo
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dane J. Youtz
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Loren E. Wold
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:72-85. [DOI: 10.1016/j.mrrev.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/18/2022]
|
13
|
Zullig KJ, Hendryx M. A comparative analysis of health-related quality of life for residents of U.S. counties with and without coal mining. Public Health Rep 2010; 125:548-55. [PMID: 20597455 DOI: 10.1177/003335491012500410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We compared health-related quality of life (HRQOL) in mining and non-mining counties in and out of Appalachia using the 2006 Behavioral Risk Factor Surveillance System (BRFSS) survey. METHODS Dependent variables included self-rated health, the number of poor physical and mental health days, the number of activity limitation days (in the last 30 days), and the Centers for Disease Control and Prevention Healthy Days Index. Independent variables included the presence of coal mining, Appalachian region residence, metropolitan status, primary care physician supply, and BRFSS behavioral (e.g., smoking, body mass index, and alcohol consumption) and demographic (e.g., age, gender, race, and income) variables. We compared dependent variables across a four-category variable: Appalachia (yes/ no) and coal mining (yes/no). We used SUDAAN Multilog and multiple linear regression models with post-hoc least-squares means to test for Appalachian coal-mining effects after adjusting for covariates. RESULTS Residents of coal-mining counties inside and outside of Appalachia reported significantly fewer healthy days for both physical and mental health, and poorer self-rated health (p < 0.0005) when compared with referent U.S. non-coal-mining counties, but disparities were greatest for people residing in Appalachian coal-mining areas. Furthermore, results remained consistent in separate analyses by gender and age. CONCLUSIONS Coal-mining areas are characterized by greater socioeconomic disadvantage, riskier health behaviors, and environmental degradation that are associated with reduced HRQOL.
Collapse
Affiliation(s)
- Keith J Zullig
- Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
14
|
Abstract
Corporation-induced diseases are defined as diseases of consumers, workers, or community residents who have been exposed to disease agents contained in corporate products. To study the epidemiology and to guide expanded surveillance of these diseases, a new analytical framework is proposed. This framework is based on the agent-host-environment model and the upstream multilevel epidemiologic approach and posits an epidemiologic cascade starting with government-sanctioned corporate profit making and ending in a social cost, i.e., harm to population health. Each of the framework's levels addresses a specific level of analysis, including government, corporations, corporate conduits, the environment of the host, and the host. The explained variable at one level is also the explanatory variable at the next lower level. In this way, a causal chain can be followed along the epidemiologic cascade from the site of societal power down to the host. The framework thus describes the pathways by which corporate decisions filter down to disease production in the host and identifies opportunities for epidemiologic surveillance. Since the environment of city dwellers is strongly shaped by corporations that are far upstream and several levels away, the framework has relevance for the study of urban health. Corporations that influence the health of urban populations include developers and financial corporations that determine growth or decay of urban neighborhoods, as well as companies that use strategies based on neighborhood characteristics to sell products that harm consumer health. Epidemiological inquiry and surveillance are necessary at all levels to provide the knowledge needed for action to protect the health of the population. To achieve optimal inquiry and surveillance at the uppermost levels, epidemiologists will have to work with political scientists and other social scientists and to utilize novel sources of information.
Collapse
Affiliation(s)
- René I Jahiel
- Department of Community Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
15
|
Hendryx M, Ahern MM. Relations between health indicators and residential proximity to coal mining in West Virginia. Am J Public Health 2008; 98:669-71. [PMID: 18309131 DOI: 10.2105/ajph.2007.113472] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We used data from a survey of 16493 West Virginians merged with county-level coal production and other covariates to investigate the relations between health indicators and residential proximity to coal mining. Results of hierarchical analyses indicated that high levels of coal production were associated with worse adjusted health status and with higher rates of cardiopulmonary disease, chronic obstructive pulmonary disease, hypertension, lung disease, and kidney disease. Research is recommended to ascertain the mechanisms, magnitude, and consequences of a community coal-mining exposure effect.
Collapse
Affiliation(s)
- Michael Hendryx
- Department of Community Medicine, West Virginia University, One Medical Center Dr, PO Box 9190, Morgantown, WV 26506, USA.
| | | |
Collapse
|
16
|
|
17
|
Pearce N. Response: The distribution and determinants of epidemiologic research. Int J Epidemiol 2008. [DOI: 10.1093/ije/dym268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Hendryx M, Ahern MM, Nurkiewicz TR. Hospitalization patterns associated with Appalachian coal mining. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:2064-2070. [PMID: 18049995 DOI: 10.1080/15287390701601236] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.
Collapse
Affiliation(s)
- Michael Hendryx
- Department of Community Medicine and Institute for Health Policy Research, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | |
Collapse
|
19
|
Jahiel RI, Babor TF. Industrial epidemics, public health advocacy and the alcohol industry: lessons from other fields. Addiction 2007; 102:1335-9. [PMID: 17697267 DOI: 10.1111/j.1360-0443.2007.01900.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pearce N. Commentary: The rise and rise of corporate epidemiology and the narrowing of epidemiology's vision. Int J Epidemiol 2007; 36:713-7. [PMID: 17660194 DOI: 10.1093/ije/dym152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Neil Pearce
- Centre for Public Health Research, Massey University Wellington Campus, Private Box 756, Wellington, New Zealand.
| |
Collapse
|
21
|
Carlsten C, Kaufman JD, Peretz A, Trenga CA, Sheppard L, Sullivan JH. Coagulation markers in healthy human subjects exposed to diesel exhaust. Thromb Res 2007; 120:849-55. [PMID: 17321570 PMCID: PMC2288659 DOI: 10.1016/j.thromres.2007.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 01/02/2007] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ambient particulate matter (PM) is associated with cardiovascular morbidity and mortality. It has been proposed that PM induces a pro-thrombotic process, increasing the risk of cardiovascular events, with some support from epidemiological and laboratory-based models. Diesel exhaust is a major contributor to urban PM, and we conducted a controlled human exposure of diesel exhaust in healthy subjects. OBJECTIVE To evaluate diesel exhaust exposure effects on fibrinolytic burden (D-dimer), platelet number, and endothelial injury (von Willebrand's factor, VWF), inhibition of the fibrinolytic pathway (plasminogen activator inhibitor-1 [PAI-1]), and inflammation (C-reactive protein, CRP). MATERIALS AND METHODS Randomized, crossover, double-blinded design, with 13 healthy participants exposed on three different days (>or=2 weeks washout) to diesel exhaust at 0 (filtered air), 100 microg PM(2.5)/m(3) and 200 microg PM(2.5)/m(3). We assessed diesel exhaust-associated changes in D-dimer, VWF, PAI-1 and platelets at 3, 6 and 22 h, and CRP at 22 h, after exposure initiation. RESULT Significant changes did not occur in any primary endpoints. Among secondary endpoints, diesel exhaust (200 microg PM(2.5)/m(3)) effect on PAI-1 levels at 22 h was of borderline significance, with a 1.32-fold decrease after exposure to diesel exhaust (200 microg PM(2.5)/m(3)), relative to filtered air (CI 1.00 to 1.54). Diurnal patterns in D-dimer and PAI-1 were observed. CONCLUSIONS In healthy individuals, exposure to 200 microg PM(2.5)/m(3) diesel exhaust did not affect primary pro-thrombotic endpoints. Thus, these data do not support a diesel exhaust-induced pro-thrombotic phenomenon. Replication of these studies should be carried out to ascertain whether or not they inform our mechanistic understanding of air pollution's cardiovascular effects.
Collapse
Affiliation(s)
- Chris Carlsten
- Department of Medicine, University of Washington, 4225 Roosevelt Ave NE, University of Washington, Campus Box 354695, Seattle, WA 98195, United States.
| | | | | | | | | | | |
Collapse
|