1
|
Bhatia S, Hipwood L, Claxton B, Bessot A, Weekes A, Sokolowski K, Mashimo T, Bock N, McGovern J. Divergent effects of premineralization and prevascularization on osteogenesis and vascular integration in humanized tissue engineered bone constructs. Acta Biomater 2025:S1742-7061(25)00434-9. [PMID: 40514004 DOI: 10.1016/j.actbio.2025.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 06/05/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Osteogenesis (bone formation) and vascularization (blood vessel formation) are two central and interconnected physiological-relevant processes in bone formation. Prevascularization of humanized tissue-engineered bone constructs (hTEBCs) has been proposed to better mimic the human bone microenvironment by enhancing vascular integration and facilitating greater osteogenic capacity. Here, we investigated the effects of premineralization and prevascularization on bone and vasculature development in an ectopic hTEBC model using a scaffold-hydrogel composite approach. Human osteoblast cells (hOBs) were cultured under osteogenic conditions (OM), with or without a 3-day mineralization boost (OM+) period for 4 weeks prior to implantation in vivo in a supporting porous polycaprolactone (mPCL) scaffold. Separately, photocrosslinkable fish gelatin-derived hydrogels placed within supporting mPCL scaffolds showed formation of elongated vascular networks as early as day 3 with in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human bone marrow mesenchymal stem/stromal cells (MSCs). The OM and OM+ cultured constructs were subcutaneously implanted into immunocompromised rats with and without the prevascular hydrogels, resulting in four subgroups: OM, OM+, OM/Vas, and OM+/Vas. Our results demonstrated that the OM+ group led to more rapid osteoinduction and enhanced osteogenic differentiation in vivo with woven bone structure and active remodeling. Conversely, prevascularization (OM/Vas, OM+/Vas groups) led to reduce in vivo bone volume and density but promoted the development of human endothelial networks and successful anastomosis with host vasculature. Our study highlights the distinct contributions of premineralization and prevascularization, where premineralization is critical for robust bone formation and prevascularization enhances vascular integration, providing important insights for advancing the physiological relevance of hTEBC models in animal hosts. STATEMENT OF SIGNIFICANCE: This study demonstrates the development of humanized tissue engineered bone constructs incorporating a vascular niche using a rat. By integrating innovative pre-mineralization and pre-vascularization techniques within scaffold-hydrogel composite, we show that premineralization accelerates bone formation, while prevascularization promotes endothelial network formation and integration with host vasculature. Photocrosslinkable, low-stiffness LunaGel™ hydrogels enhanced microcapillary-like structure formation and endothelial sprouting in in vitro co-culture. However, by combining osteogenic and vascular cues within a biodegradable composite, this work advances the bone tissue engineering field by creating a model that more accurately reflects the divergent and competing nature of vascularization and bone formation. This platform has broad applicability for studying bone-vascular interactions and may inform strategies to improve the design of biomaterials for regenerative therapies.
Collapse
Affiliation(s)
- Sugandha Bhatia
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia
| | - Luke Hipwood
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia
| | - Briony Claxton
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia
| | - Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia
| | - Angus Weekes
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia
| | - Kamil Sokolowski
- Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, 4102, Australia; Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, QUT, Brisbane, QLD, 4059, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD, 4102, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, QUT, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farell E, Ahmad M, Ignatius A, Grover L, Geris L, Tuckermann J. Why Animal Experiments Are Still Indispensable in Bone Research: A Statement by the European Calcified Tissue Society. J Bone Miner Res 2023; 38:1045-1061. [PMID: 37314012 PMCID: PMC10962000 DOI: 10.1002/jbmr.4868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Imke A.K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, USA and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric Farell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Liam Grover
- Healthcare Technologies Institute, Institute of Translational MedicineHeritage Building Edgbaston, Birmingham
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Lahr CA, Landgraf M, Wagner F, Cipitria A, Moreno-Jiménez I, Bas O, Schmutz B, Meinert C, Cavalcanti ADS, Mashimo T, Miyasaka Y, Holzapfel BM, Shafiee A, McGovern JA, Hutmacher DW. A humanised rat model of osteosarcoma reveals ultrastructural differences between bone and mineralised tumour tissue. Bone 2022; 158:116018. [PMID: 34023543 DOI: 10.1016/j.bone.2021.116018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Current xenograft animal models fail to accurately replicate the complexity of human bone disease. To gain translatable and clinically valuable data from animal models, new in vivo models need to be developed that mimic pivotal aspects of human bone physiology as well as its diseased state. Above all, an advanced bone disease model should promote the development of new treatment strategies and facilitate the conduction of common clinical interventional procedures. Here we describe the development and characterisation of an orthotopic humanised tissue-engineered osteosarcoma (OS) model in a recently genetically engineered x-linked severe combined immunodeficient (X-SCID) rat. For the first time in a genetically modified rat, our results show the successful implementation of an orthotopic humanised tissue-engineered bone niche supporting the growth of a human OS cell line including its metastatic spread to the lung. Moreover, we studied the inter- and intraspecies differences in ultrastructural composition of bone and calcified tissue produced by the tumour, pointing to the crucial role of humanised animal models.
Collapse
Affiliation(s)
- Christoph A Lahr
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, LMU, Marchioninistraße 15, 81377 Munich, Germany
| | - Marietta Landgraf
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Ferdinand Wagner
- Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, LMU, Marchioninistraße 15, 81377 Munich, Germany; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337 Munich, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476 Potsdam, Germany
| | - Inés Moreno-Jiménez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476 Potsdam, Germany
| | - Onur Bas
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beat Schmutz
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, QLD 4029, Australia
| | - Christoph Meinert
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; School of Mechanical, Medical and Process Engineering, 2 George Street, Brisbane, QLD 4001, Australia
| | - Amanda Dos Santos Cavalcanti
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Osaka, Japan
| | - Boris M Holzapfel
- Musculoskeletal University Centre Munich, Department of Orthopedics and Trauma Surgery, University Hospital Munich, LMU, Marchioninistraße 15, 81377 Munich, Germany
| | - Abbas Shafiee
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia.
| | - Jacqui A McGovern
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; School of Mechanical, Medical and Process Engineering, 2 George Street, Brisbane, QLD 4001, Australia.
| | - Dietmar W Hutmacher
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia; ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical and Process Engineering, 2 George Street, Brisbane, QLD 4001, Australia.
| |
Collapse
|
4
|
Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells. Cancers (Basel) 2021; 13:cancers13020174. [PMID: 33419058 PMCID: PMC7825408 DOI: 10.3390/cancers13020174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.
Collapse
|
5
|
Bertin H, Gomez-Brouchet A, Rédini F. Osteosarcoma of the jaws: An overview of the pathophysiological mechanisms. Crit Rev Oncol Hematol 2020; 156:103126. [PMID: 33113487 DOI: 10.1016/j.critrevonc.2020.103126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023] Open
Abstract
Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from long-bone OS (LBOS) in terms of the time of onset (two decades later), lower metastatic spread, and better survival. OS is characterized by the proliferation of osteoblastic precursor cells and the production of osteoid or immature bone. OS arises from a combination of genetic aberrations and a favourable microenvironment. This local microenvironment includes bone cells, blood vessels, stromal cells, and immune infiltrates, all of which may constitute potential targets for anti-cancer drugs. Differences in the clinical and biological behaviour of JOS versus LBOS are likely to at least in part be due to differences in the microenvironment between the two sites. The present review provides a brief overview of the known pathophysiological parameters involved in JOS.
Collapse
Affiliation(s)
- Hélios Bertin
- Department of Maxillofacial Surgery, Nantes University Hospital, 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| | - A Gomez-Brouchet
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, 1 Avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France.
| | - F Rédini
- Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| |
Collapse
|
6
|
Moreno-Jiménez I, Cipitria A, Sánchez-Herrero A, van Tol AF, Roschger A, Lahr CA, McGovern JA, Hutmacher DW, Fratzl P. Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. SCIENCE ADVANCES 2020; 6:6/44/eabb9265. [PMID: 33115741 PMCID: PMC7608795 DOI: 10.1126/sciadv.abb9265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/31/2020] [Indexed: 05/07/2023]
Abstract
Humanized mouse models are increasingly studied to recapitulate human-like bone physiology. While human and mouse bone architectures differ in multiple scales, the extent to which chimeric human-mouse bone physiologically interacts and structurally integrates remains unknown. Here, we identify that humanized bone is formed by a mosaic of human and mouse collagen, structurally integrated within the same bone organ, as shown by immunohistochemistry. Combining this with materials science techniques, we investigate the extracellular matrix of specific human and mouse collagen regions. We show that human-like osteocyte lacunar-canalicular network is retained within human collagen regions and is distinct to that of mouse tissue. This multiscale analysis shows that human and mouse tissues physiologically integrate into a single, functional bone tissue while maintaining their species-specific ultrastructural differences. These results offer an original method to validate and advance tissue-engineered human-like bone in chimeric animal models, which grow to be eloquent tools in biomedical research.
Collapse
Affiliation(s)
- I Moreno-Jiménez
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - A Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - A Sánchez-Herrero
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - A F van Tol
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - C A Lahr
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - J A McGovern
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - D W Hutmacher
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.
| |
Collapse
|
7
|
Pierrevelcin M, Fuchs Q, Lhermitte B, Messé M, Guérin E, Weingertner N, Martin S, Lelong-Rebel I, Nazon C, Dontenwill M, Entz-Werlé N. Focus on Hypoxia-Related Pathways in Pediatric Osteosarcomas and Their Druggability. Cells 2020; 9:cells9091998. [PMID: 32878021 PMCID: PMC7564372 DOI: 10.3390/cells9091998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor diagnosed during adolescence and young adulthood. It is associated with the worst outcomes in the case of poor response to chemotherapy and in metastatic disease. While no molecular biomarkers are clearly and currently associated with those worse situations, the study of pathways involved in the high level of tumor necrosis and in the immune/metabolic intra-tumor environment seems to be a way to understand these resistant and progressive osteosarcomas. In this review, we provide an updated overview of the role of hypoxia in osteosarcoma oncogenesis, progression and during treatment. We describe the role of normoxic/hypoxic environment in normal tissues, bones and osteosarcomas to understand their role and to estimate their druggability. We focus particularly on the role of intra-tumor hypoxia in osteosarcoma cell resistance to treatments and its impact in its endogenous immune component. Together, these previously published observations conduct us to present potential perspectives on the use of therapies targeting hypoxia pathways. These therapies could afford new treatment approaches in this bone cancer. Nevertheless, to study the osteosarcoma cell druggability, we now need specific in vitro models closely mimicking the tumor, its intra-tumor hypoxia and the immune microenvironment to more accurately predict treatment efficacy and be complementary to mouse models.
Collapse
Affiliation(s)
- Marina Pierrevelcin
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Quentin Fuchs
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Benoit Lhermitte
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Melissa Messé
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Eric Guérin
- Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Noelle Weingertner
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Sophie Martin
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Isabelle Lelong-Rebel
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Charlotte Nazon
- Pediatric Oncohematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
| | - Natacha Entz-Werlé
- Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, 67405 Illkirch, France; (M.P.); (Q.F.); (B.L.); (M.M.); (S.M.); (I.L.-R.); (M.D.)
- Pediatric Oncohematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France;
- Correspondence: ; Tel.: +33-3-8812-8396; Fax: +33-3-8812-8092
| |
Collapse
|
8
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
9
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:1707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Sungwoo Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Seol Eui Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Ji Sook Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Department of Clinical Pathology, Hanyang University Seoul Hospital, Seoul 04763, Korea.
| | - Seung Han Son
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Young Soo Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Department of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Geun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
10
|
Landgraf M, Lahr CA, Sanchez-Herrero A, Meinert C, Shokoohmand A, Pollock PM, Hutmacher DW, Shafiee A, McGovern JA. Humanized bone facilitates prostate cancer metastasis and recapitulates therapeutic effects of zoledronic acid in vivo. Bone Res 2019; 7:31. [PMID: 31646018 PMCID: PMC6804745 DOI: 10.1038/s41413-019-0072-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancer (PCa) is known for its high prevalence to metastasize to bone, at which point it is considered incurable. Despite significant effort, there is no animal model capable of recapitulating the complexity of PCa bone metastasis. The humanized mouse model for PCa bone metastasis used in this study aims to provide a platform for the assessment of new drugs by recapitulating the human-human cell interactions relevant for disease development and progression. The humanized tissue-engineered bone construct (hTEBC) was created within NOD-scid IL2rgnull (NSG) mice and was used for the study of experimental PC3-Luc bone metastases. It was confirmed that PC3-Luc cells preferentially grew in the hTEBC compared with murine bone. The translational potential of the humanized mouse model for PCa bone metastasis was evaluated with two clinically approved osteoprotective therapies, the non-species-specific bisphosphonate zoledronic acid (ZA) or the human-specific antibody Denosumab, both targeting Receptor Activator of Nuclear Factor Kappa-Β Ligand. ZA, but not Denosumab, significantly decreased metastases in hTEBCs, but not murine femora. These results highlight the importance of humanized models for the preclinical research on PCa bone metastasis and indicate the potential of the bioengineered mouse model to closely mimic the metastatic cascade of PCa cells to human bone. Eventually, it will enable the development of new effective antimetastatic treatments.
Collapse
Affiliation(s)
- Marietta Landgraf
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph A. Lahr
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Alvaro Sanchez-Herrero
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ali Shokoohmand
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Pamela M. Pollock
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD Australia
| | - Jacqui A. McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
11
|
Abstract
Although the investigation into biomarkers specific for pulmonary metastasis within osteosarcoma (OS) has recently expanded, their usage within the clinic remains sparse. The current screening protocol after any OS diagnosis includes a chest CT scan; however, metastatic lung nodules frequently go undetected and remain the primary cause of death in OS. Recently, screening technologies such as liquid biopsy and next-generation sequencing have revealed a promising array of biomarkers with predictive and diagnostic value for the pulmonary metastasis associated with OS. These biomarkers draw from genomics, transcriptomics, epigenetics, and metabolomics. When assessed in concert, their utility is most promising as OS is a highly heterogeneous cancer. Accordingly, there has been an expansion of clinical trials not only aimed at further demonstrating the significance of these individual biomarkers but to also reveal which therapies resolve the pulmonary metastasis once detected. This review will focus on the recently discovered and novel metastatic biomarkers within OS, their molecular and cellular mechanisms, the expansion of humanized OS mouse models amenable to their testing, and the associated clinical trials aimed at managing the metastatic phase of OS.
Collapse
|
12
|
Wagner F, Holzapfel BM, Martine LC, McGovern J, Lahr CA, Boxberg M, Prodinger PM, Grässel S, Loessner D, Hutmacher DW. A humanized bone microenvironment uncovers HIF2 alpha as a latent marker for osteosarcoma. Acta Biomater 2019; 89:372-381. [PMID: 30836200 DOI: 10.1016/j.actbio.2019.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
The quest for predictive tumor markers for osteosarcoma (OS) has not well progressed over the last two decades due to a lack of preclinical models. The aim of this study was to investigate if microenvironmental modifications in an original humanized in vivo model alter the expression of OS tumor markers. Human bone micro-chips and bone marrow, harvested during hip arthroplasty, were implanted at the flanks of NOD/scid mice. We administered recombinant human bone morphogenetic protein 7 (rhBMP-7) in human bone micro-chips/bone marrow group I in order to modulate bone matrix and bone marrow humanization. Ten weeks post-implantation, human Luc-SAOS-2 OS cells were injected into the humanized tissue-engineered bone organs (hTEBOs). Tumors were harvested 5 weeks post-implantation to determine the expression of the previously described OS markers ezrin, periostin, VEGF, HIF1α and HIF2α. Representation of these proteins was analyzed in two different OS patient cohorts. Ezrin was downregulated in OS in hTEBOs with rhBMP-7, whereas HIF2α was significantly upregulated in comparison to hTEBOs without rhBMP-7. The expression of periostin, VEGF and HIF1α did not differ significantly between both groups. HIF2α was consistently present in OS patients and dependent on tumor site and clinical stage. OS patients post-chemotherapy had suppressed levels of HIF2α. In conclusion, we demonstrated the overall expression of OS-related factors in a preclinical model, which is based on a humanized bone organ. Our preclinical research results and analysis of two comprehensive patient cohorts imply that HIF2α is a potential prognostic marker and/or therapeutic target. STATEMENT OF SIGNIFICANCE: This study demonstrates the clinical relevance of the humanized organ bone microenvironment in osteosarcoma research and validates the expression of tumor markers, especially HIF2α. The convergence of clinically proven bone engineering concepts for the development of humanized mice models is a new starting point for investigations of OS-related marker expression. The validation and first data set in such a model let one conclude that further clinical studies on the role of HIF2α as a prognostic marker and its potential as therapeutic target is a condition sine qua non.
Collapse
|
13
|
Bertin H, Guilho R, Brion R, Amiaud J, Battaglia S, Moreau A, Brouchet-Gomez A, Longis J, Piot B, Heymann D, Corre P, Rédini F. Jaw osteosarcoma models in mice: first description. J Transl Med 2019; 17:56. [PMID: 30813941 PMCID: PMC6391788 DOI: 10.1186/s12967-019-1807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from other OS in terms of the time of occurrence (two decades later) and better survival. The aim of our work was to develop and characterize specific mouse models of JOS. METHODS Syngenic and xenogenic models of JOS were developed in mice using mouse (MOS-J) and human (HOS1544) osteosarcoma cell lines, respectively. An orthotopic patient-derived xenograft model (PDX) was also developed from a mandibular biopsy. These models were characterized at the histological and micro-CT imaging levels, as well as in terms of tumor growth and metastatic spread. RESULTS Homogeneous tumor growth was observed in both the HOS1544 and the MOS-J JOS models by injection of 0.25 × 106 and 0.50 × 106 tumor cells, respectively, at perimandibular sites. Histological characterization of the tumors revealed features consistent with high grade conventional osteosarcoma, and the micro-CT analysis revealed both osteogenic and osteolytic lesions. Early metastasis was encountered at day 14 in the xenogenic model, while there were no metastatic lesions in the syngenic model and in the PDX models. CONCLUSION We describe the first animal model of JOS and its potential use for therapeutic applications. This model needs to be compared with the usual long-bone osteosarcoma models to investigate potential differences in the bone microenvironment.
Collapse
Affiliation(s)
- Hélios Bertin
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France. .,Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.
| | - Romain Guilho
- Faculty of Population Health Sciences, UCL Institute of Child Health, 30 Guilford Street, London, England, WC1N 1EH, UK
| | - Régis Brion
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Jérôme Amiaud
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Séverine Battaglia
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Anne Moreau
- Service d'anatomie et cytologie pathologique, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Anne Brouchet-Gomez
- Service d'anatomie et cytologie pathologique, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.,Centre de ressources biologiques - Cancer, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Julie Longis
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Benoit Piot
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Dominique Heymann
- Laboratoire Hétérogénéité Tumorale et Médecine de Précision, Institut de Cancérologie de l'Ouest, Boulevard Jacques Monod, 44805, Saint Herblain, France.,Service d'Histologie-Embryologie, Faculté de médecine de Nantes, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Pierre Corre
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.,Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Françoise Rédini
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| |
Collapse
|
14
|
Su Y, Zhou Y, Sun YJ, Wang YL, Yin JY, Huang YJ, Zhang JJ, He AN, Han K, Zhang HZ, Yao Y, Lv XB, Hu HY. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. J Mol Med (Berl) 2018; 97:49-61. [PMID: 30426155 DOI: 10.1007/s00109-018-1711-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS), which is the most common primary malignant bone tumor, has a high incidence of pulmonary metastasis. CCL18 (C-C motif chemokine ligand 18), which is secreted by tumor-associated macrophages (TAMs), has been found to be increased in various tumors and is associated with tumor metastasis. However, the role of CCL18 in OS remains unclear. Here, we evaluated the effect of CCL18 on the OS cell lines MG63 and 143B and explored its potential mechanisms. We found that CCL18 enhanced the proliferation and migration of OS cells and upregulated UCA1 through transcription factor EP300. Subsequently, we further revealed that the downstream Wnt/β-catenin signaling pathway participated in this process. In addition, the high expression of CCL18 in both tissue and serum from patients was closely related to pulmonary metastasis and poor survival in OS patients. The tumor xenograft models also showed that CCL18 promoted the metastasis of OS cells. Collectively, our study indicated that macrophage-derived CCL18 promotes OS proliferation and metastasis via the EP300/UCA1/Wnt/β-catenin pathway and that CCL18 may be used as a prognostic marker and therapeutic target of OS. KEY MESSAGES: CCL18 promotes proliferation and migration of osteosarcoma cells by EP300/ UCA1/ Wnt/β-catenin pathway. CCL18+ TAMs are significantly correlated with pulmonary metastasis and poor survival in osteosarcoma patients. CCL18 may be used as a prognostic marker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yang Su
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yuan-Jue Sun
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, No. 6600, Nanfeng Road, Fengxian District, Shanghai City, 201499, China
| | - Ya-Ling Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Jun-Yi Yin
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yu-Jing Huang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Jian-Jun Zhang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Ai-Na He
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Kun Han
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Hui-Zhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yang Yao
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital, Nanchang University, No. 128 Xiangshan North Road, Donghu District, Nanchang City, 330008, Jiangxi Province, China.
| | - Hai-Yan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China.
| |
Collapse
|
15
|
Chen CF, Chu HC, Chen CM, Cheng YC, Tsai SW, Chang MC, Chen WM, Wu PK. A safety comparative study between freezing nitrogen ethanol composite and liquid nitrogen for cryotherapy of musculoskeletal tumors. Cryobiology 2018; 83:34-39. [PMID: 29953845 DOI: 10.1016/j.cryobiol.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Freezing nitrogen ethanol composite (FNEC) showed effective cryoablative ability for bone tumor ex vivo and in vivo comparable to liquid nitrogen (LN). We therefore wished to compare the radiant cooling damage of the surrounding tissue between FNEC and LN. The evaluation of the radiant cooling damage was demonstrated human bone xenograft transplantation (HXT) in a mouse model. Characterizations and quantifications of the damaging effects on morphologic features and apoptosis of the cryoablative surrounding bone tissue, muscle and epidermal layer of skin were compared. The radiant cooled damaging effects including epidermal rupture, hair follicle atrophy, dermis and subcutaneous crystal vacuolation of skin were significantly greater in LN than FNEC. Muscular apoptosis, structural shrinkage and bone cellular apoptosis were supposedly 15%-33% destroying degrees of LN more than FNEC. We concluded that FNEC is an innovative cryogenic material, and it could cause less cryoablative damage to surrounding normal tissue than LN. The findings might support the safety of FNEC being applied in clinical cryoablation therapy.
Collapse
Affiliation(s)
- Cheng-Fong Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Hui-Chun Chu
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Yu-Chi Cheng
- Department of Radiology, Taichung Veterans General Hospital, Taiwan
| | - Shang-Wen Tsai
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Ming-Chau Chang
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Wei-Ming Chen
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taiwan; Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taiwan; Orthopaedic Department School of Medicine, National Yang-Ming University, Taiwan.
| |
Collapse
|
16
|
McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech 2018; 11:11/4/dmm033084. [PMID: 29685995 PMCID: PMC5963860 DOI: 10.1242/dmm.033084] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches.
Collapse
Affiliation(s)
- Jacqui Anne McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| | - Michelle Griffin
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, NW3 2QG, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
| | - Dietmar Werner Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia .,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| |
Collapse
|
17
|
Wagner F, Holzapfel BM, McGovern JA, Shafiee A, Baldwin JG, Martine LC, Lahr CA, Wunner FM, Friis T, Bas O, Boxberg M, Prodinger PM, Shokoohmand A, Moi D, Mazzieri R, Loessner D, Hutmacher DW. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 2018; 171:230-246. [PMID: 29705656 DOI: 10.1016/j.biomaterials.2018.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model. METHODS Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 + cells. Human osteosarcoma (OS) growth was induced within the ohTEBCs by direct injection of Luc-SAOS-2 cells. Tissues were harvested for bone matrix and marrow morphology analysis as well as tumor biology investigations. Tumor marker expression was analyzed in the humanized OS and correlated with the expression in 68 OS patients utilizing tissue micro arrays (TMA). RESULTS After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples. CONCLUSION OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.
Collapse
Affiliation(s)
- Ferdinand Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstraße 4, 80337 Munich, Germany; Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077 Bad Abbach, Germany
| | - Boris M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Jeremy G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Laure C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Christoph A Lahr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Melanie Boxberg
- Institute of Pathology, Klinikum Rechts der Isar, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Peter M Prodinger
- Department of Orthopedic Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ali Shokoohmand
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Davide Moi
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Roberta Mazzieri
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA; Institute for Advanced Study, Technical University Munich, Lichtenbergstraße 2a, 85748 Garching, Munich, Germany.
| |
Collapse
|
18
|
Landgraf M, McGovern JA, Friedl P, Hutmacher DW. Rational Design of Mouse Models for Cancer Research. Trends Biotechnol 2018; 36:242-251. [PMID: 29310843 DOI: 10.1016/j.tibtech.2017.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models. Nevertheless, most preclinical studies in mice suffer from insufficient predictive value when compared with cancer biology and therapy response of human patients. We propose an innovative strategy to improve the predictive power of preclinical cancer models. Combining (i) genomic, tissue engineering and regenerative medicine approaches for rational design of mouse models with (ii) rapid prototyping and computational benchmarking against human clinical data will enable fast and nonbiased validation of newly generated models.
Collapse
Affiliation(s)
- Marietta Landgraf
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Peter Friedl
- Radboud University Medical Center, Department of Cell Biology, Post 283, PO Box 9101, 6500HB Nijmegen, The Netherlands; University of Texas MD Anderson Cancer Center, Genitourinary Medical Oncology-Research, Houston, TX, USA; Cancer Genomics Center, Utrecht, The Netherlands
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Wunner FM, Bas O, Saidy NT, Dalton PD, Pardo EMDJ, Hutmacher DW. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. J Vis Exp 2017:56289. [PMID: 29364204 PMCID: PMC5908370 DOI: 10.3791/56289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This tutorial reflects on the fundamental principles and guidelines for electrospinning writing with polymer melts, an additive manufacturing technology with great potential for biomedical applications. The technique facilitates the direct deposition of biocompatible polymer fibers to fabricate well-ordered scaffolds in the sub-micron to micro scale range. The establishment of a stable, viscoelastic, polymer jet between a spinneret and a collector is achieved using an applied voltage and can be direct-written. A significant benefit of a typical porous scaffold is a high surface-to-volume ratio which provides increased effective adhesion sites for cell attachment and growth. Controlling the printing process by fine-tuning the system parameters enables high reproducibility in the quality of the printed scaffolds. It also provides a flexible manufacturing platform for users to tailor the morphological structures of the scaffolds to their specific requirements. For this purpose, we present a protocol to obtain different fiber diameters using melt electrospinning writing (MEW) with a guided amendment of the parameters, including flow rate, voltage and collection speed. Furthermore, we demonstrate how to optimize the jet, discuss often experienced technical challenges, explain troubleshooting techniques and showcase a wide range of printable scaffold architectures.
Collapse
Affiliation(s)
- Felix M Wunner
- ARC ITTC in Additive Biomanufacturing, Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT)
| | - Onur Bas
- ARC ITTC in Additive Biomanufacturing, Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT)
| | - Navid T Saidy
- ARC ITTC in Additive Biomanufacturing, Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT)
| | - Paul D Dalton
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg
| | - Elena M De-Juan Pardo
- ARC ITTC in Additive Biomanufacturing, Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT)
| | - Dietmar W Hutmacher
- ARC ITTC in Additive Biomanufacturing, Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT); Institute for Advanced Study, Technical University of Munich (TUM); George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology;
| |
Collapse
|
20
|
Ogilvie CM, Schwartz AM, Reimer NB. What's New in Musculoskeletal Tumor Surgery. J Bone Joint Surg Am 2017; 99:2127-2132. [PMID: 29257020 DOI: 10.2106/jbjs.17.01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Christian M Ogilvie
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Andrew M Schwartz
- Department of Orthopaedic Surgery, Emory University, Atlanta, Georgia
| | - Nickolas B Reimer
- Department of Orthopaedic Surgery, Emory University, Atlanta, Georgia
| |
Collapse
|
21
|
Martine LC, Holzapfel BM, McGovern JA, Wagner F, Quent VM, Hesami P, Wunner FM, Vaquette C, De-Juan-Pardo EM, Brown TD, Nowlan B, Wu DJ, Hutmacher CO, Moi D, Oussenko T, Piccinini E, Zandstra PW, Mazzieri R, Lévesque JP, Dalton PD, Taubenberger AV, Hutmacher DW. Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc 2017; 12:639-663. [PMID: 28253234 DOI: 10.1038/nprot.2017.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.
Collapse
Affiliation(s)
- Laure C Martine
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Boris M Holzapfel
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Jacqui A McGovern
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ferdinand Wagner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Verena M Quent
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Obstetrics and Gynecology, Martin-Luther-Krankenhaus, Academic Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Parisa Hesami
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Felix M Wunner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Cedryck Vaquette
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | | | - Toby D Brown
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Bianca Nowlan
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dan Jing Wu
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Davide Moi
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Tatiana Oussenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Elia Piccinini
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Roberta Mazzieri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jean-Pierre Lévesque
- Stem Cell Biology Group - Blood and Bone Diseases Program, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Dalton
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Functional Materials in Medicine and Dentistry, and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Anna V Taubenberger
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Biotec TU Dresden, Dresden, Germany
| | - Dietmar W Hutmacher
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Institute for Advanced Study, Technical University Munich, Garching, Germany
| |
Collapse
|
22
|
|