1
|
Hu X, Li C, Tang X, Wang Y, Luo Y, Zhou Y, Tu C, Yang X, Min L. Clinical Application of 3D-Printed Custom Hemipelvic Prostheses With Negative Poisson's Ratio Porous Structures in Reconstruction After Resection of Pelvic Malignant Tumors. Orthop Surg 2025. [PMID: 40310728 DOI: 10.1111/os.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/03/2025] Open
Abstract
OBJECTIVES Pelvic bone tumor resection and reconstruction present significant challenges due to complex anatomy and weight-bearing demands. 3D-printed hemipelvic prostheses, incorporating customized osteotomy guides and porous structures, offer a promising solution for enhancing osseointegration. This study evaluates the long-term outcomes of 3D-printed custom hemipelvic reconstruction with a focus on the integration of auxetic biomaterials with a negative Poisson's ratio to optimize mechanical properties. METHODS A retrospective analysis was conducted on 12 patients with primary pelvic malignancies who underwent reconstruction using 3D-printed hemipelvic prostheses between January 2018 and May 2023. Follow-up duration was 48 months (range, 29-64 months) Oncological, functional, surgical, pain control, and radiographic outcomes were assessed. RESULTS At the latest follow-up, 8 patients (66.7%) were disease-free, 3 (25%) had disease progression, and 1 (8.3%) died from metastatic complications. Functional outcomes improved significantly, with the MSTS-93 score increasing from 15 (range, 12-17) to 26 (range, 21-29). Pain scores decreased from 5 (range, 4-7) to 1 (range, 0-2). The median surgical duration was 270 min (range, 150-560 min), with intraoperative blood loss averaging 3200 mL (range, 1900-6300 mL). Complications included poor wound healing in 2 patients (16.7%), managed with VAC drainage. No mechanical failures, loosening, or fractures occurred. Accurate osteotomy, prosthesis implantation, and screw fixation were achieved. Successful osseointegration was observed in all cases, with no signs of bone absorption or osteolysis. CONCLUSIONS 3D-printed custom hemipelvic prostheses with auxetic biomaterials offer an effective solution for pelvic reconstruction, providing promising oncological, functional, and radiographic outcomes. These findings support the use of 3D printing in complex pelvic defect reconstruction, optimizing both osteointegration and mechanical strength.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Chuang Li
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Dunbar NJ, Zhu Y, Babazadeh-Naseri A, Akin JE, Spazzoli B, Belvedere C, Donati DM, Leardini A, Fregly BJ. Blinded prediction of custom-made pelvic implant failure using patient-specific finite element modeling. Med Eng Phys 2025; 138:104321. [PMID: 40180533 DOI: 10.1016/j.medengphy.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Additively manufactured, custom-made implants used for reconstruction are a promising treatment following tumor resection. However, failure rates due to mechanical factors remain high when used in the pelvis for even state-of-the-art prosthesis designs. In a collaborative effort between a clinical and an engineering research team, this study evaluated whether patient-specific biomechanical modeling could predict, in a blinded fashion, the mode and location of a clinically-observed mechanical failure. Multiple failure criteria were considered including the risk of bone fracture due to overloading or stress shielding and prosthesis fracture due to overloading or fatigue. The blinded predictions indicated that the risk of fatigue failure in the pubic screws were eight times higher than the most critical ilium screw and two times higher than the most critical cancellous screw. Simulation of stress-shielding during walking matched evidence of osteolysis in the ilium and pubis. Incorporating patient-specific modeling into the custom implant design process may lead to improved durability.
Collapse
Affiliation(s)
- Nicholas J Dunbar
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Yuhui Zhu
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | | | - John E Akin
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Benedetta Spazzoli
- Third Orthopaedic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Davide M Donati
- Third Orthopaedic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Guan J, Qi F, Liang H, Liu X, Zhao Z, Chen L, Zhang R, Yang RY, Goker B, Singh S, Hoang BH, Geller DS, Wang J, Yang R. Advancements in Surgical Management of Periacetabular Metastases: Emphasizing Minimally Invasive Techniques. Cancers (Basel) 2025; 17:1015. [PMID: 40149349 PMCID: PMC11941501 DOI: 10.3390/cancers17061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
This review aims to summarize the evolution of surgical techniques for periacetabular metastatic cancer, assess their strengths and limitations, and clarify the corresponding indications. We conducted a comprehensive literature review on periacetabular metastatic cancer, summarizing surgical techniques involving both open and minimally invasive approaches. Additionally, we evaluated the indications for different minimally invasive techniques and proposed potential combinations of these techniques. Our review underscores the benefits of minimally invasive surgery, including reduced surgical trauma, improved patient mobility, lower complication rates, and expedited recovery times, facilitating earlier initiation of systemic cancer therapies. These techniques show substantial potential for broader application in the future. Despite the historical reliance on open surgery as the standard treatment, minimally invasive approaches are emerging as a promising alternative, particularly for managing osteolytic metastases around the acetabulum. This review provides insights into the optimal integration of these techniques, aiming to support evidence-based clinical decision-making and improve patient outcomes.
Collapse
Affiliation(s)
- Jian Guan
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
- The First School of Clinical Medicine, Nanfang Hospital Southern Medical University, Guangzhou 518060, China
| | - Feiyang Qi
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Haijie Liang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Xingyu Liu
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Zhiqing Zhao
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Linxi Chen
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - Ryan Y. Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - Barlas Goker
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - Bang H. Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - David S. Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| | - Jichuan Wang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100044, China; (J.G.); (F.Q.); (H.L.); (X.L.); (Z.Z.); (L.C.)
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.Z.); (R.Y.Y.); (B.G.); (S.S.); (B.H.H.); (D.S.G.)
| |
Collapse
|
4
|
De Pace R, Molinari S, Mazzoni E, Perale G. Bone Regeneration: A Review of Current Treatment Strategies. J Clin Med 2025; 14:1838. [PMID: 40142646 PMCID: PMC11943102 DOI: 10.3390/jcm14061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Bone regeneration has emerged as a critical research and clinical advancement field, fueled by the growing demand for effective treatments in orthopedics and oncology. Over the past two decades, significant progress in biomaterials and surgical techniques has led to the development of novel solutions for treating bone defects, surpassing the use of traditional autologous grafts. This review aims to assess the latest approaches in bone regeneration, including autologous, allogenic, and xenogenic grafts, naturally derived biomaterials, and innovative synthetic substitutes such as bioceramics, bioactive glasses, metals, polymers, composite materials, and other specialized applications. A comprehensive literature search was conducted on PubMed, focusing on studies published between 2019 and 2024, including meta-analyses, reviews, and systematic reviews. The review evaluated a range of bone regeneration strategies, examining the clinical outcomes, materials used, surgical techniques, and the effectiveness of various approaches in treating bone defects. The search identified numerous studies, with the inclusion criteria focused on those exploring innovative bone regeneration strategies. These studies provided valuable insights into the clinical and biological outcomes of different biomaterials and graft types. Results indicated that while advancements in synthetic and naturally derived biomaterials show promising potential, challenges remain in optimizing therapeutic strategies across diverse patient populations and clinical settings. The findings emphasize the need for an integrated approach that combines scientific research, clinical practice, and technological innovation to improve bone regeneration therapies. Further research is required to establish standardized protocols and determine the optimal application of various materials and techniques to enhance patient outcomes and the quality of care.
Collapse
Affiliation(s)
- Raffaella De Pace
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Molinari
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via G. Buffi 13, 6900 Lugano, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| |
Collapse
|
5
|
Wang J, Geller DS, Sun L, Tang X. Transforming osteosarcoma care: from historical milestones to precision medicine advances. Sci Bull (Beijing) 2025; 70:290-294. [PMID: 39676007 DOI: 10.1016/j.scib.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Jichuan Wang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing 100041, China
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx 10471, USA
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaodong Tang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing 100041, China.
| |
Collapse
|
6
|
McAnena AP, McClennen T, Zheng H. Patient-Specific 3-Dimensional-Printed Orthopedic Implants and Surgical Devices Are Potential Alternatives to Conventional Technology But Require Additional Characterization. Clin Orthop Surg 2025; 17:1-15. [PMID: 39912074 PMCID: PMC11791502 DOI: 10.4055/cios23294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/07/2025] Open
Abstract
Background Three-dimensional (3D) printing allows anatomical models, guides, and implants to be easily customized to individual patients. Three-dimensional-printed devices can be used for a number of purposes in the medical field, yet there is a lack of data on the implementation of 3D-printed patient-specific implants and surgical guides in orthopedics. The objective of this review of the literature was to summarize the implementation of 3D printing in orthopedic surgery and identify areas that require more investigation. Methods PubMed and Scopus were used to perform a literature search. Articles that described 3D-printed patient-specific orthopedic implants or intraoperative guides were reviewed. Relevant articles were compiled and summarized to determine the role of personalized 3D-printed implants in orthopedic surgery. Results A total of 58 papers were selected. Overall, 3D-printed implants and surgical guides were shown to be effective in the selected cases. Patients with bone tumors benefitted from custom 3D-printed implants, which allow aggressive resection while preserving the function and mechanical stability of the limb. Eighty-one percent of devices were made using titanium, and 48% of articles reported the use of 3D printing in oncology. Some reported adverse events including wound dehiscence, periprosthetic infection, dislocation, and sequelae of malignancy. Regulations surrounding the use of 3D-printed surgical devices are ambiguous. Conclusions Three-dimensional-printed orthopedic implants and guides present an alternative to commercial devices, as they allow for customizability that is useful in cases of anatomic complexity. A variety of materials were surveyed across multiple subspecialties. Large controlled studies are necessary to compare patient-specific implants with the standard of care and evaluate their safety profiles over time.
Collapse
Affiliation(s)
- Aidan P. McAnena
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts T.H. Chan School of Medicine, Worcester, MA, USA
| | - Taylor McClennen
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts T.H. Chan School of Medicine, Worcester, MA, USA
| | - Hua Zheng
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts T.H. Chan School of Medicine, Worcester, MA, USA
| |
Collapse
|
7
|
Vaynrub M, Healey JH, Morris C, Shahzad F. Reconstruction of Internal Hemipelvectomy Defects After Oncologic Resection. J Am Acad Orthop Surg 2025; 33:e124-e135. [PMID: 39241189 PMCID: PMC11747889 DOI: 10.5435/jaaos-d-23-00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/08/2024] Open
Abstract
Internal hemipelvectomy is preferred to hindquarter amputation for pelvic tumor resection if a functional lower extremity can be obtained without compromising oncologic principles; multidisciplinary advances in orthopaedic and plastic surgery reconstruction have made this possible. The goals of skeletal reconstruction are restoration of pelvic and spinopelvic skeletal continuity, maintenance of limb length, and creation of a functional hip joint. The goals of soft-tissue reconstruction are stable coverage of skeletal, prosthetic, and neurovascular structures, elimination of dead space, and prevention of herniation. Pelvic resections are divided into four types: type I (ilium), type II (acetabulum), type III (ischiopubic rami), and type IV (sacrum). Type I and IV resections resulting in pelvic discontinuity are often reconstructed with vascularized bone flaps and instrumentation. Type II resections, which traditionally result in the greatest functional morbidity, are often reconstructed with hip transposition, allograft, prosthesis, and allograft-prosthetic composites. Type III resections require soft-tissue repair, sometimes with flaps and mesh, but generally no skeletal reconstruction. Extension of resection into the sacrum can result in additional skeletal instability, neurologic deficit, and soft-tissue insufficiency, necessitating a robust reconstructive strategy. Internal hemipelvectomy creates complex deficits that often require advanced multidisciplinary reconstructions to optimize outcomes and minimize complications.
Collapse
Affiliation(s)
- Max Vaynrub
- Orthopaedic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H. Healey
- Orthopaedic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Morris
- Orthopaedic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farooq Shahzad
- Plastic & Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Huang X, Huang D, Lin N, Yan X, Qu H, Ye Z. 3D-Printed Prosthesis with an Articular Interface for Anatomical Acetabular Reconstruction After Type I + II (+ III) Internal Hemipelvectomy: Clinical Outcomes and Finite Element Analysis. J Bone Joint Surg Am 2025; 107:184-195. [PMID: 39729975 PMCID: PMC11717430 DOI: 10.2106/jbjs.23.01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND Pelvic reconstruction after type I + II (or type I + II + III) internal hemipelvectomy with extensive ilium removal is a great challenge. In an attempt to anatomically reconstruct the hip rotation center (HRC) and achieve a low mechanical failure rate, a custom-made, 3D-printed prosthesis with a porous articular interface was developed. The aim of this study was to investigate the clinical outcomes of patients treated with this prosthesis. METHODS This retrospective cohort study included 28 patients with type I + II (+ III) internal hemipelvectomy through the articular interface of the sacroiliac joint and managed with a prosthesis at a single center between August 2016 and August 2021. Complications and oncological outcomes were analyzed. The position of the reconstructed HRC was assessed and lower-limb function was evaluated. Biomechanical analyses of different fixation modes of the prosthesis were conducted using finite element analysis. RESULTS The displacement distance of the HRC from preoperatively to postoperatively was a mean (and standard deviation) of 14.12 ± 8.75 mm. The rate of implant-related complications was 14.3% (4 of 28) for prosthetic breakage, 14.3% (4 of 28) for aseptic loosening, 7.1% (2 of 28) for dislocation, and 7.1% (2 of 28) for deep infection. The mean Musculoskeletal Tumor Society (MSTS)-93 score was 18.2. The aseptic loosening rate was significantly greater for prostheses fixed with 3 sacral screws (4 of 10, 40.0%) than for those fixed with 4 (0 of 10, 0%) or 5 screws (0 of 8, 0%) (p = 0.024). The prosthetic breakage rate was lower in patients who underwent lumbosacral fixation (0 of 13, 0%) than in those who did not (4 of 15, 26.7%), although the difference did not reach significance (p = 0.102). Biomechanical analyses suggested that the addition of lumbosacral fixation or increasing the number of sacral screws from 3 to 4 or 5 visibly reduced the peak stress of the sacral screws. CONCLUSIONS The use of a 3D-printed prosthesis with an articular interface for pelvic reconstruction demonstrated stable prosthetic fixation, anatomical acetabular reconstruction, and acceptable early functional outcomes. LEVEL OF EVIDENCE Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Xin Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Nong Lin
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaobo Yan
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Hao Qu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhaoming Ye
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
9
|
Lin J, Yan A, Huang A, Tang Q, Lu J, Xu H, Huang Y, Luo T, Chen Z, Zeng A, Zhu X, Yang C, Wang J. Nickel-titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy. Mater Today Bio 2024; 29:101344. [PMID: 39635319 PMCID: PMC11615607 DOI: 10.1016/j.mtbio.2024.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Nickel-titanium (NiTi) alloy is a widely utilized medical shape memory alloy (SMA) known for its excellent shape memory effect and superelasticity. Here, laser powder bed fusion (LPBF) technology was employed to fabricate a porous NiTi alloy scaffold featuring a topologically optimized dominant cellular structure that demonstrates favorable physical and superior biological properties. Utilizing a porous structure topology optimization method informed by the stress state of human bones, two types of cellular structures-compression and torsion-were designed, and porous scaffolds were produced via LPBF. The physical properties of the porous NiTi alloy scaffolds were evaluated to confirm their biocompatibility, while their osteogenic efficacy was investigated through both in vivo and in vitro experiments, with comparisons made against a traditional octahedral unit cell structure. NiTi alloy porous scaffolds can be nearly net-shaped via LPBF and exhibit favorable physical properties, including a low elastic modulus, high hydrophilicity, a specific linear expansion rate, as well as superelastic and shape memory effects. These scaffolds demonstrate excellent biocompatibility, support in vitro osteogenesis, and possess significant in vivo bone ingrowth capabilities. When compared to titanium alloys, NiTi alloys show comparable osteogenic properties in vitro but superior bone ingrowth properties in vivo. Additionally, among octahedral-type, torsion-type, and topologically optimized compression-type porous scaffolds, the latter demonstrates enhanced bone ingrowth properties. LPBF technology is effective for manufacturing porous NiTi alloy scaffolds with fine pore structures and excellent mechanical properties. The scaffolds based on topologically optimized dominant cellular structures facilitate satisfactory and efficient bone formation.
Collapse
Affiliation(s)
- Jiaming Lin
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - An Yan
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou, 510640, China
| | - Anfei Huang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yufeng Huang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Anyu Zeng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Yang
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou, 510640, China
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
10
|
Yan X, Wang K, Huang X, Lin N, Liu M, Ren Y, Ye Z. Clinical outcomes after extra-articular resection of hip joint tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis with posterior column preserved. Bone Jt Open 2024; 5:1027-1036. [PMID: 39530843 PMCID: PMC11556355 DOI: 10.1302/2633-1462.511.bjo-2024-0121.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Aims For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis. Methods We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan. Results Postoperative pathological assessment revealed a negative surgical margin was achieved in all patients. At final follow-up, 13.3% (2/15) died and no recurrence occurred. The overall survival was 81.7% at five years. None of the patients showed any signs of aseptic loosening, and no wound healing issues were observed. In total, 20% (3/15) developed complications, with two cases of early hip dislocation and one case of deep infection. The cumulative incidence of mechanical and non-mechanical failure in this series was 13.7% and 9.3%, respectively, at five years. In this cohort, the mean time to full weightbearing was 5.89 (SD 0.92) weeks and the mean Musculoskeletal Tumor Society score was 24.1 (SD 4.4). Conclusion For patients with a hip joint tumour who met the inclusion criteria and were deemed suitable for posterior column preservation, a custom-made osteotomy guide combined with 3D-printed endoprosthesis is worth performing when treating patients who require extra-articular resection of the hip joint, as it can achieve adequate margin for local control, maximize bone preservation to maintain pelvic ring integrity, reduce the risk of complications by simplifying the surgical procedure, and allow for more precise reconstruction for better function.
Collapse
Affiliation(s)
- Xiaobo Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Ren
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics, Diagnosis and Treatment Center of Bone Metastasis, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Xie M, Ye Q, Gong T, Li Z, Wang Y, Lu M, Luo Y, Min L, Tu C, Zhou Y. Short-to-Mid-Term Outcomes of Ipsilateral Femoral Head Autograft Combined with Uncemented Total Hip Replacement for Partial Periacetabular Defects Following Tumor Resection. Orthop Surg 2024. [PMID: 39324498 DOI: 10.1111/os.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE Periacetabular tumors, especially in young to middle-aged patients with invasive benign tumors or low-grade malignant tumors involving type II or II + III, present significant challenges due to their rarity and the complexity of the anatomical and biomechanical structures involved. The primary difficulty lies in balancing the need to avoid unfavorable oncological outcomes while maintaining postoperative hip joint function during surgical resection. This study aimed to evaluate the effectiveness and reliability of a surgical method involving partial weight-bearing acetabular preservation combined with the use of an uncontaminated femoral head autograft to reconstruct the segmental bone defect after intra-articular resection of the tumorous joint, providing a solution that ensures both oncological safety and functional preservation of the hip joint in these patients. METHODS We conducted a retrospective study with a follow-up period of at least 36 months. From January 2010 to October 2020, we reviewed 20 cases of patients under 60 year of age with periacetabular invasive benign tumors or primary low-grade malignant tumors. All patients underwent reconstruction of the tumorous joint using autologous femoral head grafts. Data collected included patient age, gender, tumor type, preoperative and postoperative visual analog scale (VAS) scores, Musculoskeletal Tumor Society (MSTS) scores, Harris Hip Scores (HHS), patient survival rates, postoperative tumor recurrence, and surgical complications. To analyze the data, we utilized various statistical methods, including descriptive statistics to summarize patient demographics and clinical characteristics, and paired sample t-tests to compare preoperative and postoperative scores. RESULTS The study included 20 patients, and a total median follow-up was 83 months. Their pathologic diagnoses comprised 13 giant cell tumors (GCTs), 5 chondrosarcomas, one chondroblastoma, and 1 leiomyosarcoma. Postoperatively, the median differences in vertical and horizontal center of rotation (COR) were 3.8 and 4.0 mm. Median limb length discrepancy (LLD) postoperatively was 5.7 mm (range, 2.3-17.8 mm). Two patients (10%) experienced delayed wound healing, resolved with antibiotics and early surgical debridement. One patient experienced dislocation 3 months postoperatively, which was promptly addressed under general anesthesia without further dislocation. CONCLUSION Through multiplanar osteotomy with limited margins, femoral head autograft, and uncemented total hip replacement for pelvic segmental bone defects in selected patients in type II or II + III appears to be an encouraging limb-sparing surgery worthy of consideration for carefully selected patients.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Ye
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Sun Y, Xue H, Wang X, Zhang J, Xu Z, Guo Y, Xin R, Yu Z, Han Q, Zhao X, Wang J, Ren L. Finite-element analysis of different fixation types after Enneking II + III pelvic tumor resection. Sci Rep 2024; 14:20878. [PMID: 39242632 PMCID: PMC11379819 DOI: 10.1038/s41598-024-71334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The current primary treatment approach for malignant pelvic tumors involves hemipelvic prosthesis reconstruction following tumor resection. In cases of Enneking type II + III pelvic tumors, the prosthesis necessitates fixation to the remaining iliac bone. Prevailing methods for prosthesis fixation include the saddle prosthesis, ice cream prosthesis, modular hemipelvic prosthesis, and personalized prosthetics using three-dimensional printing. To prevent failure of hemipelvic arthroplasty protheses, a novel fixation method was designed and finite element analysis was conducted. In clinical cases, the third and fourth sacral screws broke, a phenomenon also observed in the results of finite element analysis. Based on the original surgical model, designs were created for auxiliary dorsal iliac, auxiliary iliac bottom, auxiliary sacral screw, and auxiliary pubic ramus fixation. A nonlinear quasi-static finite element analysis was then performed under the maximum load of the gait cycle, and the results indicated that assisted sacral dorsal fixation significantly reduces stress on the sacral screws and relative micromotion exceeding 28 μm. The fixation of the pubic ramus further increased the initial stability of the prosthesis and its interface osseointegration ability. Therefore, for hemipelvic prostheses, incorporating pubic ramus support and iliac back fixation is advisable, as it provides new options for the application of hemipelvic tumor prostheses.
Collapse
Affiliation(s)
- Yu Sun
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China
| | - Haowen Xue
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China
| | - Xiaonan Wang
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China
| | - Jiaxin Zhang
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China
| | - Zezhou Xu
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yunting Guo
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Renlong Xin
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Zhenglei Yu
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Qing Han
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China
| | - Xin Zhao
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China.
| | - Jincheng Wang
- Orthopaedic Hospital, The Second Hospital of Jilin University, Changchun, 130012, China.
| | - Luquan Ren
- Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
Zhu Y, Babazadeh-Naseri A, Brake MRW, Akin JE, Li G, Lewis VO, Fregly BJ. Evaluation of finite element modeling methods for predicting compression screw failure in a custom pelvic implant. Front Bioeng Biotechnol 2024; 12:1420870. [PMID: 39234264 PMCID: PMC11372789 DOI: 10.3389/fbioe.2024.1420870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction: Three-dimensional (3D)-printed custom pelvic implants have become a clinically viable option for patients undergoing pelvic cancer surgery with resection of the hip joint. However, increased clinical utilization has also necessitated improved implant durability, especially with regard to the compression screws used to secure the implant to remaining pelvic bone. This study evaluated six different finite element (FE) screw modeling methods for predicting compression screw pullout and fatigue failure in a custom pelvic implant secured to bone using nine compression screws. Methods: Three modeling methods (tied constraints (TIE), bolt load with constant force (BL-CF), and bolt load with constant length (BL-CL)) generated screw axial forces using functionality built into Abaqus FE software; while the remaining three modeling methods (isotropic pseudo-thermal field (ISO), orthotropic pseudo-thermal field (ORT), and equal-and-opposite force field (FOR)) generated screw axial forces using iterative physics-based relationships that can be implemented in any FE software. The ability of all six modeling methods to match specified screw pretension forces and predict screw pullout and fatigue failure was evaluated using an FE model of a custom pelvic implant with total hip replacement. The applied hip contact forces in the FE model were estimated at two locations in a gait cycle. For each of the nine screws in the custom implant FE model, likelihood of screw pullout failure was predicted using maximum screw axial force, while likelihood of screw fatigue failure was predicted using maximum von Mises stress. Results: The three iterative physics-based modeling methods and the non-iterative Abaqus BL-CL method produced nearly identical predictions for likelihood of screw pullout and fatigue failure, while the other two built-in Abaqus modeling methods yielded vastly different predictions. However, the Abaqus BL-CL method required the least computation time, largely because an iterative process was not needed to induce specified screw pretension forces. Of the three iterative methods, FOR required the fewest iterations and thus the least computation time. Discussion: These findings suggest that the BL-CL screw modeling method is the best option when Abaqus is used for predicting screw pullout and fatigue failure in custom pelvis prostheses, while the iterative physics-based FOR method is the best option if FE software other than Abaqus is used.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Ata Babazadeh-Naseri
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Matthew R W Brake
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - John E Akin
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Geng Li
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Valerae O Lewis
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
14
|
Çevik HB, Ruggieri P, Giannoudis PV. Management of metastatic bone disease of the pelvis: current concepts. Eur J Trauma Emerg Surg 2024; 50:1277-1294. [PMID: 37934294 DOI: 10.1007/s00068-023-02382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Metastatic disease of the pelvis is frequently associated with severe pain and impaired ambulatory function. Depending on the patient's characteristics, primary tumor, and metastatic pelvic disease, the treatment choice may be varied. This study aims to report on the current management options of metastatic pelvic disease. METHODS We comprehensively researched multiple databases and evaluated essential studies about current concepts of managing a metastatic bone disease of the pelvis, focusing on specific indications as well as on the result of treatment. RESULTS Pelvic metastases not in the periacetabular region can be managed with modification of weight-bearing, analgesics, bisphosphonates, chemotherapy and/or radiotherapy. Minimally invasive approaches include radiofrequency ablation, cryoablation, embolization, percutaneous osteoplasty, and percutaneous screw placement. Pathological or impending periacetabular fracture, excessive periacetabular bone defect, radioresistant tumor, and persistent debilitating pain despite non-surgical treatment and/or minimally invasive procedures can be managed with different surgical techniques. Overall, treatment can be divided into nonoperative, minimally invasive, and operative based on specific indications, the expectations of the patient and the lesion. CONCLUSION Different treatment modalities exist to manage metastatic pelvic bone disease. Decision-making for the most appropriate treatment should be made with a multidisciplinary approach based on a case-by-case basis.
Collapse
Affiliation(s)
- Hüseyin Bilgehan Çevik
- Orthopaedics and Traumatology, Ankara Etlik City Hospital, University of Health Sciences, Ankara, Turkey.
| | - Pietro Ruggieri
- Orthopaedics and Orthopaedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padua, Italy
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Hu X, Lu M, Wang Y, Luo Y, Zhou Y, Yang X, Tu C, Min L. Advanced Pelvic Girdle Reconstruction with three dimensional-printed Custom Hemipelvic Endoprostheses following Pelvic Tumour Resection. INTERNATIONAL ORTHOPAEDICS 2024; 48:2217-2231. [PMID: 38775826 PMCID: PMC11246265 DOI: 10.1007/s00264-024-06207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Resection of pelvic bone tumours and subsequent pelvic girdle reconstruction pose formidable challenges due to the intricate anatomy, weight-bearing demands, and significant defects. 3D-printed implants have improved pelvic girdle reconstruction by enabling precise resections with customized guides, offering tailored solutions for diverse bone defect morphology, and integrating porous surface structures to promote osseointegration. Our study aims to evaluate the long-term efficacy and feasibility of 3D-printed hemipelvic reconstruction following resection of malignant pelvic tumours. METHODS A retrospective review was conducted on 96 patients with primary pelvic malignancies who underwent pelvic girdle reconstruction using 3D-printed custom hemipelvic endoprostheses between January 2017 and May 2022. Follow-up duration was median 48.1 ± 17.9 months (range, 6 to 76 months). Demographic data, imaging examinations, surgical outcomes, and oncological evaluations were extracted and analyzed. The primary endpoints included oncological outcomes and functional status assessed by the Musculoskeletal Tumor Society (MSTS-93) score. Secondary endpoints comprised surgical duration, intraoperative bleeding, pain control and complications. RESULTS In 96 patients, 70 patients (72.9%) remained disease-free, 15 (15.6%) had local recurrence, and 11 (11.4%) succumbed to metastatic disease. Postoperatively, function improved with MSTS-93 score increasing from 12.2 ± 2.0 to 23.8 ± 3.8. The mean operating time was 275.1 ± 94.0 min, and the mean intraoperative blood loss was 1896.9 ± 801.1 ml. Pain was well-managed, resulting in substantial improvements in VAS score (5.3 ± 1.8 to 1.4 ± 1.1). Complications occurred in 13 patients (13.5%), including poor wound healing (6.3%), deep prosthesis infection (4.2%), hip dislocation (2.1%), screw fracture (1.0%), and interface loosening (1.0%). Additionally, all patients achieved precise implantation of customized prosthetics according to preoperative plans. T-SMART revealed excellent integration at the prosthesis-bone interface for all patients. CONCLUSION The use of a 3D-printed custom hemipelvic endoprosthesis, characterized by anatomically designed contours and a porous biomimetic surface structure, offers a potential option for pelvic girdle reconstruction following internal hemipelvectomy in primary pelvic tumor treatment. Initial results demonstrate stable fixation and satisfactory mid-term functional and radiographic outcomes.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, 610064, China.
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Huang D, Chen Z, Yan X, Huang X, Liu M, Yao Z, Li H, Qu H, Ma X, Ye Z, Lin N. Novel positioning guiders accurately assist in situ acetabular reconstruction for patients undergoing pelvic bone tumor resection. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:2963-2972. [PMID: 38836905 DOI: 10.1007/s00590-024-04020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Acetabular reconstruction in situ after extensive pelvic resection is technically challenging. The aim of this study was to investigate the feasibility of positioning guiders for acetabular reconstruction following pelvic tumor resection and the clinical benefit brought by the approach. METHODS The study included patients who underwent acetabular reconstruction following periacetabular tumor resection using a modular hemipelvic prosthesis. In the guider-assisted group (n = 14), guiders were designed and applied to assist acetabular reconstruction. In the traditional operation group (n = 18), the patients underwent the same surgery but without the guiders. The displacement of the hip rotation center before and after surgery was calculated. The complications and the Musculoskeletal Tumor Society-93 scores were documented. RESULTS The overall displacement of the hip rotation center was significantly reduced in the guider-assisted group compared with the traditional operation group (13.83 ± 4.06 vs. 22.95 ± 9.18 mm in P = 0.000, 95%CI 3.90-12.96), especially in the anteroposterior axis (3.77 ± 3.03 versus 13.51 ± 9.43 mm in P = 0.000, 95%CI 3.45-13.09). Guider-assisted acetabular reconstruction reduced the risk of prosthesis dislocation compared with the traditional operation (dislocation risks: 1/14, 7.1% vs. 4/18, 22.2%). CONCLUSION Positioning guiders can effectively and conveniently help place the modular hemipelvic prosthesis at the native position, which might potentially reduce the risk of prosthesis dislocation. LEVEL OF EVIDENCE Therapeutic level III.
Collapse
Affiliation(s)
- Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Zehao Chen
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Xiaobo Yan
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Xin Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Meng Liu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Zhaonong Yao
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Hengyuan Li
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Hao Qu
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Xiao Ma
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Zhaoming Ye
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Nong Lin
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.
| |
Collapse
|
17
|
Liu B, Wang L, Li X, Chen Z, Hou G, Zhou F, Wang C, Tian Y. Applying 3D-printed prostheses to reconstruct critical-sized bone defects of tibial diaphysis (> 10 cm) caused by osteomyelitis and aseptic non-union. J Orthop Surg Res 2024; 19:418. [PMID: 39033286 PMCID: PMC11264997 DOI: 10.1186/s13018-024-04926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Clinical repair of critical-sized bone defects (CBDs) in the tibial diaphysis presents numerous challenges, including inadequate soft tissue coverage, limited blood supply, high load-bearing demands, and potential deformities. This study aimed to investigate the clinical feasibility and efficacy of employing 3D-printed prostheses for repairing CBDs exceeding 10 cm in the tibial diaphysis. METHODS This retrospective study included 14 patients (11 males and 3 females) with an average age of 46.0 years. The etiologies of CBDs comprised chronic osteomyelitis (10 cases) and aseptic non-union (4 cases), with an average defect length of 16.9 cm. All patients underwent a two-stage surgical approach: (1) debridement, osteotomy, and cement spacer implantation; and (2) insertion of 3D-printed prostheses. The interval between the two stages ranged from 8 to 12 weeks, during which the 3D-printed prostheses and induced membranes were meticulously prepared. Subsequent to surgery, patients engaged in weight-bearing and functional exercises under specialized supervision. Follow-up assessments, including gross observation, imaging examinations, and administration of the Lower Extremity Functional Scale (LEFS), were conducted at 3, 6, and 12 months postoperatively, followed by annual evaluations thereafter. RESULTS The mean postoperative follow-up duration was 28.4 months, with an average waiting period between prosthesis implantation and weight-bearing of 10.4 days. At the latest follow-up, all patients demonstrated autonomous ambulation without assistance, and their LEFS scores exhibited a significant improvement compared to preoperative values (30.7 vs. 53.1, P < 0.001). Imaging assessments revealed progressive bone regeneration at the defect site, with new bone formation extending along the prosthesis. Complications included interlocking screw breakage in two patients, interlocking screw loosening in one patient, and nail breakage in another. CONCLUSIONS Utilization of 3D-printed prostheses facilitates prompt restoration of CBDs in the tibial diaphysis, enabling early initiation of weight-bearing activities and recovery of ambulatory function. This efficacious surgical approach holds promise for practical application.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Liwei Wang
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuo Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Guojin Hou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
18
|
Lin J, Song G, Huang A, Hu J, Tang Q, Lu J, Huang Y, Gong M, Zhu X, Wang J. Design and validation of a novel 3D-printed glenohumeral fusion prosthesis for the reconstruction of proximal humerus bone defects: a biomechanical study. Front Bioeng Biotechnol 2024; 12:1428446. [PMID: 39040498 PMCID: PMC11260710 DOI: 10.3389/fbioe.2024.1428446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background All available methods for reconstruction after proximal humerus tumor resection have disadvantages, and the optimal reconstruction method remains uncertain. This study aimed to design a novel 3D-printed glenohumeral fusion prosthesis and verify its feasibility and safety using biomechanical methods. Methods We verified the feasibility and safety of the 3D-printed glenohumeral fusion prosthesis by finite element analysis and biomechanical experimentation. In the finite element analysis, three reconstruction methods were used, and displacement and von Mises stress were observed; on this basis, in the biomechanical experiment, models constructed with sawbones were classified into two groups. The force‒displacement curve of the 3D-printed prosthesis was evaluated. Results In terms of displacement, the finite element analysis showed greater overall stability for the novel prosthesis than traditional glenohumeral joint arthrodesis. There was no obvious stress concentration in the internal part of the 3D-printed glenohumeral fusion prosthesis; the stable structure bore most of the stress, and the force was well distributed. Adding lateral plate fixation improved the stability and mechanical properties of the prosthesis. Furthermore, the biomechanical results showed that without lateral plate fixation, the total displacement of the prosthesis doubled; adding lateral plate fixation could reduce and disperse strain on the glenoid. Conclusion The design of the 3D-printed glenohumeral fusion prosthesis was rational, and its stability and mechanical properties were better than those of traditional glenohumeral joint arthrodesis. Biomechanical verification demonstrated the feasibility and safety of this prosthesis, indicating its potential for proximal humerus bone defect reconstruction after tumor resection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Chen Z, Xing Y, Li X, Liu B, Liu N, Huo Y, Tian Y. 3D-printed titanium porous prosthesis combined with the Masquelet technique for the management of large femoral bone defect caused by osteomyelitis. BMC Musculoskelet Disord 2024; 25:474. [PMID: 38880911 PMCID: PMC11181595 DOI: 10.1186/s12891-024-07576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The treatment of infected bone defects remains a clinical challenge. With the development of three-dimensional printing technology, three-dimensional printed implants have been used for defect reconstruction. The aim of this study was to investigate the clinical outcomes of three-dimensional printed porous prosthesis in the treatment of femoral defects caused by osteomyelitis. METHODS Eleven patients with femoral bone defects following osteomyelitis who were treated with 3D-printed porous prosthesis at our institution between May 2017 and July 2021, were included. Eight patients were diagnosed with critical-sized defects, and the other three patients were diagnosed with shape-structural defects. A two-stage procedure was performed for all patients, and the infection was eradicated and bone defects were occupied by polymethylmethacrylate spacer during the first stage. The 3D-printed prosthesis was designed and used for the reconstruction of femoral defects in the second stage. Position of the reconstructed prostheses and bone growth were measured using radiography. The union rate, complications, and functional outcomes at the final follow-up were assessed. RESULTS The mean length of the bone defect was 14.0 cm, union was achieved in 10 (91%) patients. All patients showed good functional performance at the most recent follow-up. In the critical-sized defect group, one patient developed a deep infection that required additional procedures. Two patients had prosthetic dislocations. Radiography demonstrated good osseous integration of the implant-bone interface in 10 patients. CONCLUSION The 3D printed prostheses enable rapid anatomical and mechanically stable reconstruction of extreme femur bone defects, effectively shortens treatment time, and achieves satisfactory clinical outcomes.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Orthopedics, Peking University Third Hospital, No.49, North Garden Rd, HaiDian District, Beijing, 100191, China
| | - Yong Xing
- Department of Orthopedics, Peking University Third Hospital, No.49, North Garden Rd, HaiDian District, Beijing, 100191, China
| | - Xingcai Li
- Department of Orthopedics, Peking University Third Hospital, No.49, North Garden Rd, HaiDian District, Beijing, 100191, China
| | - Bingchuan Liu
- Department of Orthopedics, Peking University Third Hospital, No.49, North Garden Rd, HaiDian District, Beijing, 100191, China
| | - Ning Liu
- Beijing AK Medical Co., Ltd, Changping District, Beijing, China
| | - Yaping Huo
- Beijing AK Medical Co., Ltd, Changping District, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, No.49, North Garden Rd, HaiDian District, Beijing, 100191, China.
| |
Collapse
|
20
|
Hu X, Lu M, Wang Y, Luo Y, Zhou Y, Yang X, Min L, Tu C. 3D-Printed custom-made hemipelvic endoprosthetic reconstruction following periacetabular tumor resection: utilizing a novel classification system. BMC Musculoskelet Disord 2024; 25:384. [PMID: 38755628 PMCID: PMC11097426 DOI: 10.1186/s12891-024-07509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Customized 3D-printed pelvic implants with a porous structure have revolutionized periacetabular pelvic defect reconstruction after tumor resection, offering improved osteointegration, long-term stability, and anatomical fit. However, the lack of an established classification system hampers implementation and progress. METHODS We formulated a novel classification system based on pelvic defect morphology and 3D-printed hemipelvis endoprostheses. It integrates surgical approach, osteotomy guide plate and prosthesis design, postoperative rehabilitation plans, and perioperative processes. RESULTS Retrospectively analyzing 60 patients (31 males, 29 females), we classified them into Type A (15 patients: Aa = 6, Ab = 9), Type B (27 patients: Ba = 15, Bb = 12), Type C (17 patients). All underwent customized osteotomy guide plate-assisted tumor resection and 3D-printed hemipelvic endoprosthesis reconstruction. Follow-up duration was median 36.5 ± 15.0 months (range, 6 to 74 months). The mean operating time was 430.0 ± 106.7 min, intraoperative blood loss 2018.3 ± 1305.6 ml, transfusion volume 2510.0 ± 1778.1 ml. Complications occurred in 13 patients (21.7%), including poor wound healing (10.0%), deep prosthesis infection (6.7%), hip dislocation (3.3%), screw fracture (1.7%), and interface loosening (1.7%). VAS score improved from 5.5 ± 1.4 to 1.7 ± 1.3, MSTS-93 score from 14.8 ± 2.5 to 23.0 ± 5.6. Implant osseointegration success rate was 98.5% (128/130), with one Type Ba patient experiencing distal prosthesis loosening. CONCLUSION The West China classification may supplement the Enneking and Dunham classification, enhancing interdisciplinary communication and surgical outcomes. However, further validation and wider adoption are required to confirm clinical effectiveness.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, 610064, China.
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
21
|
Hu X, Wen Y, Lu M, Luo Y, Zhou Y, Yang X, Tu C, Min L. Biomechanical and clinical outcomes of 3D-printed versus modular hemipelvic prostheses for limb-salvage reconstruction following periacetabular tumor resection: a mid-term retrospective cohort study. J Orthop Surg Res 2024; 19:258. [PMID: 38654343 DOI: 10.1186/s13018-024-04697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Debates persist over optimal pelvic girdle reconstruction after acetabular tumor resection, with surgeons grappling between modular and 3D-printed hemipelvic endoprostheses. We hypothesize superior outcomes with 3D-printed versions, yet scarce comparative research exists. This study fills the gap, examining biomechanics and clinical results retrospectively. METHODS From February 2017 to June 2021, we retrospectively assessed 32 patients undergoing en bloc resection for malignant periacetabular tumors at a single institution. PRIMARY OUTCOME limb function. SECONDARY OUTCOMES implant precision, hip joint rotation center restoration, prosthesis-bone osteointegration, and complications. Biomechanical characteristics were evaluated through finite element analysis on pelvic defect models. RESULTS In the 3D-printed group, stress distribution mirrored a normal pelvis, contrasting the modular group with elevated overall stress, unstable transitions, and higher stress peaks. The 3D-printed group exhibited superior functional scores (MSTS: 24.3 ± 1.8 vs. 21.8 ± 2.0, p < 0.05; HHS: 79.8 ± 5.2 vs. 75.3 ± 3.5, p < 0.05). Prosthetic-bone interface osteointegration, measured by T-SMART, favored 3D-printed prostheses, but surgery time (426.2 ± 67.0 vs. 301.7 ± 48.6 min, p < 0.05) and blood loss (2121.1 ± 686.8 vs. 1600.0 ± 505.0 ml, p < 0.05) were higher. CONCLUSIONS The 3D-printed hemipelvic endoprosthesis offers precise pelvic ring defect matching, superior stress transmission, and function compared to modular endoprostheses. However, complexity, fabrication expertise, and challenging surgical implantation result in prolonged operation times and increased blood loss. A nuanced consideration of functional outcomes, complexity, and patient conditions is crucial for informed treatment decisions. LEVEL OF EVIDENCE Level III, therapeutic study (Retrospective comparative study).
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Wen
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, 643000, People's Republic of China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xang, Chengdu, 610041, Sichuan, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Wang J, Zhao Z, Liang H, Niu J, Liu X, Wang H, Yang Y, Yan T, Guo W, Tang X. Clinical outcomes in patients with neurological disorders following periacetabular tumor removal and endoprosthetic reconstruction of the hemipelvis. Front Surg 2024; 11:1279179. [PMID: 38505408 PMCID: PMC10948498 DOI: 10.3389/fsurg.2024.1279179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Background Surgical treatment of musculoskeletal tumors in the periacetabular region present extremely difficult due to the complex anatomy and need for reconstruction. Orthopedic surgeons face more difficulties in patients with neurological conditions, which can cause increased muscle tone, an elevated risk of fractures, and compromised bone quality. There is limited evidence regarding endoprosthetic reconstruction for periacetabular tumors in individuals with neurological disorders. Methods We conducted a single-center retrospective study to examine the outcomes of patients with preexisting neurological conditions who underwent surgery to remove periacetabular tumors and who underwent endoprosthesis reconstruction. Clinical presentation, detailed neurological conditions, complications, and functional outcomes were studied. Results Sixteen out of the 838 patients were identified (1.91%), with a mean follow-up time of 33 months. The primary neurological conditions encompassed Parkinson's disease, Alzheimer's disease, dementia, and cerebral ischemic stroke. Every patient was diagnosed with periacetabular lesions that were either primary or oligometastatic. They underwent tumor resection and subsequently received endoprosthetic reconstruction of the hemipelvis. Three patients developed metastasis lesions later, and two patients experienced tumor recurrence. Five cases experienced hip dislocation-one with periprosthetic fracture and one with surgical site infection. The position of the prosthetic rotating center was not correlated with dislocation. The reoperation rate was 31.25%. The cohort of patients all presented with more extended hospital stays and rehabilitation. In 3 patients, the general functional score was good, while in 6 patients, it was fair; in 7 patients, it was regarded as poor. The average MSTS93 score was 49.71%. Conclusion Endoprosthetic reconstruction after periacetabular tumor resection is an effective way to eliminate tumors and salvage limbs. However, this group of patients has an increased likelihood of secondary surgery, complications, extended hospital stay, and no significant improvement in functional outcomes. Despite the diverse nature of the cohort, it is recommended to consider enhanced soft tissue reconstruction, supervised functional recovery and rehabilitation training.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaodong Tang
- The Musculoskeletal Tumor Center, Peking University People’s Hospital, Xicheng District, Beijing, China
| |
Collapse
|
23
|
Sanaei R, Pagel CN, Ayodele BA, Lozanovski B, Beths T, Leary M, Shidid D, Kastrati E, Elambasseril J, Bühner U, Williamson T, Ryan S, Brandt M. Reducing the prosthesis modulus by inclusion of an open space lattice improves osteogenic response in a sheep model of extraarticular defect. Front Bioeng Biotechnol 2023; 11:1301454. [PMID: 38130824 PMCID: PMC10733966 DOI: 10.3389/fbioe.2023.1301454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Stress shielding is a common complication following endoprosthetic reconstruction surgery. The resulting periprosthetic osteopenia often manifests as catastrophic fractures and can significantly limit future treatment options. It has been long known that bone plates with lower elastic moduli are key to reducing the risk of stress shielding in orthopedics. Inclusion of open space lattices in metal endoprostheses is believed to reduce the prosthesis modulus potentially improving stress shielding. However, no in vivo data is currently available to support this assumption in long bone reconstruction. This manuscript aims to address this hypothesis using a sheep model of extraarticular bone defect. Methods: Initially, CT was used to create a virtual resection plan of the distal femoral metaphyses and to custom design endoprostheses specific to each femur. The endoprostheses comprised additively manufactured Ti6Al4V-ELI modules that either had a solid core with a modulus of ∼120 GPa (solid implant group) or an open space lattice core with unit cells that had a modulus of 3-6 GPa (lattice implant group). Osteotomies were performed using computer-assisted navigation followed by implantations. The periprosthetic, interfacial and interstitial regions of interest were evaluated by a combination of micro-CT, back-scattered scanning electron microscopy (BSEM), as well as epifluorescence and brightfield microscopy. Results: In the periprosthetic region, mean pixel intensity (a proxy for tissue mineral density in BSEM) in the caudal cortex was found to be higher in the lattice implant group. This was complemented by BSEM derived porosity being lower in the lattice implant group in both caudal and cranial cortices. In the interfacial and interstitial regions, most pronounced differences were observed in the axial interfacial perimeter where the solid implant group had greater bone coverage. In contrast, the lattice group had a greater coverage in the cranial interfacial region. Conclusion: Our findings suggest that reducing the prosthesis modulus by inclusion of an open-space lattice in its design has a positive effect on bone material and morphological parameters particularly within the periprosthetic regions. Improved mechanics appears to also have a measurable effect on the interfacial osteogenic response and osteointegration.
Collapse
Affiliation(s)
- Reza Sanaei
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Charles Neil Pagel
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Babatunde A. Ayodele
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Bill Lozanovski
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Thierry Beths
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Endri Kastrati
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
- Stryker Australia Pty Ltd., St Leonards, NSW, Australia
| | - Joe Elambasseril
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | | | - Tom Williamson
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
- Stryker Australia Pty Ltd., St Leonards, NSW, Australia
| | - Stewart Ryan
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| |
Collapse
|
24
|
Hu X, Lu M, Zhang Y, Li Z, Wang J, Wang Y, Xing Z, Yang X, Tu C, Min L. Pelvic-girdle reconstruction with three-dimensional-printed endoprostheses after limb-salvage surgery for pelvic sarcomas: current landscape. Br J Surg 2023; 110:1712-1722. [PMID: 37824784 PMCID: PMC10638540 DOI: 10.1093/bjs/znad310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Resection of pelvic bone tumors and the subsequent reconstruction of the pelvic girdle pose challenges due to complex anatomy, load-bearing demands, and significant defects. 3D-printed implants have revolutionized pelvic girdle reconstruction by offering customized solutions, porous surface structures for precise resection with custom guides, and improved integration. Many tertiary medical centers have adopted 3Dprinted hemipelvic endoprostheses, leading to enhanced outcomes. However, most studies are limited to single centers, with a small number of cases and short follow-up periods. Additionally, the design of these implants often relies heavily on individual experience, resulting in a lack of uniformity and significant variation. To provide a comprehensive assessment of this technology, we conducted an analysis of existing literature, encompassing tumor resection classification, various types of prosthesis design, reconstruction concepts, and post-reconstruction functional outcomes.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Zhang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Babazadeh-Naseri A, Li G, Shourijeh MS, Akin JE, Higgs Iii CF, Fregly BJ, Dunbar NJ. Stress-shielding resistant design of custom pelvic prostheses using lattice-based topology optimization. Med Eng Phys 2023; 121:104012. [PMID: 37985018 DOI: 10.1016/j.medengphy.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/20/2023] [Accepted: 06/22/2023] [Indexed: 11/22/2023]
Abstract
Endoprosthetic reconstruction of the pelvic bone using 3D-printed, custom-made implants has delivered early load-bearing ability and good functional outcomes in the short term to individuals with pelvic sarcoma. However, excessive stress-shielding and subsequent resorption of peri‑prosthetic bone can imperil the long-term stability of such implants. To evaluate the stress-shielding performance of pelvic prostheses, we developed a sequential modeling scheme using subject-specific finite element models of the pelvic bone-implant complex and personalized neuromusculoskeletal models for pre- and post-surgery walking. A new topology optimization approach is introduced for the stress-shielding resistant (SSR) design of custom pelvic prostheses, which uses 3D-printable porous lattice structures. The SSR optimization was applied to a typical pelvic prosthesis to reconstruct a type II+III bone resection. The stress-shielding performance of the optimized implant based on the SSR approach was compared against the conventional optimization. The volume of the peri‑prosthetic bone predicted to undergo resorption post-surgery decreased from 44 to 18%. This improvement in stress-shielding resistance was achieved without compromising the structural integrity of the prosthesis. The SSR design approach has the potential to improve the long-term stability of custom-made pelvic prostheses.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | | | - John E Akin
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - C Fred Higgs Iii
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Nicholas J Dunbar
- Department of Orthopedic Surgery, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Lan Y, Li R, Jiang L, Zhou N, He M, Fang B, Yi C. Clinical efficacy analysis of percutaneous "tripod" combined with radiofrequency ablation and bone cement filling in the treatment of periacetabular metastases. J Orthop Surg Res 2023; 18:767. [PMID: 37817253 PMCID: PMC10565971 DOI: 10.1186/s13018-023-04255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND To investigate the clinical efficacy of a percutaneous "tripod" combined with radiofrequency ablation and bone cement filling surgery in treating acetabular bone metastases. METHODS We retrospectively analyzed 11 patients who underwent percutaneous "tripod" combined with radiofrequency ablation and bone cement filling for acetabular bone metastases at a tertiary care hospital from February 2021 to December 2022. RESULTS 11 cases with 13 hips underwent this procedure, including two female patients who underwent both sides, and the rest were unilateral. All cases were followed up for 3-24 months, with a mean of 12 months and a median follow-up time of 11 months. Two of the 11 patients died by the final follow-up, and nine survived. One died 7 months after surgery, and one died 8 months after surgery; the survival of the deceased patients was 7.5 months (range: 7-8 months), with a median survival time of 7.5 months. All 11 patients completed the surgery successfully, and the average unilateral operation time was 167.4 min (148-193). The amelioration of postoperative pain, concomitant with improved quality of life, was observed significantly, ultimately resulting in a prolonged and sustained effect. CONCLUSIONS The combination of percutaneous "tripod", radiofrequency ablation, and bone cement filling can effectively relieve pain without delaying the patient's systemic anti-tumor therapy and is a minimally invasive, safe, and effective procedure for the treatment of periacetabular metastases.
Collapse
Affiliation(s)
- Yun Lan
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Ruoyu Li
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Linheng Jiang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Nannan Zhou
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Mincon He
- Guangdong Academy of Traditional Chinese Medicine Orthopedics and Traumatology, Guangzhou, 510000, Guangdong, China
| | - Bin Fang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China
| | - Chunzhi Yi
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
27
|
Kim YT, Lee KJ, Jang YH, Yang S, Lee TQ, McGarry M, Kim SH. Cadaveric Biomechanical Study of Partial Glenoid Arthroplasty Versus the Latarjet Procedure for Anterior Glenoid Bone Loss. Am J Sports Med 2023; 51:3217-3225. [PMID: 37715516 DOI: 10.1177/03635465231192086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
BACKGROUND For severe anterior glenoid bone loss due to recurrent shoulder instability, the Latarjet procedure offers a dynamic sling effect in addition to bone augmentation. Yet, it heavily alters the surrounding anatomy, while fixation and graft union issues are also common. PURPOSE/HYPOTHESIS The purpose of this study was to compare a novel printed 3-dimensional (3D) partial glenoid arthroplasty (PGA) implant with the classic Latarjet procedure. It was hypothesized that by replicating the original glenoid geometry and preserving soft tissue anatomy, PGA may better reproduce normal joint kinematics. In addition, the locking screw construct may offer stronger fixation. STUDY DESIGN Controlled laboratory study. METHODS A total of 14 matched cadaveric shoulders were tested. The PGA implant was 3D printed in titanium based on preoperative computed tomography. The intact, 25% anterior glenoid bone loss, and postoperative states were tested in the scapular and coronal planes. The following parameters were measured: articular surface area and stepoff, rotational range of motion and the humeral head apex position during rotation, and load and linear stiffness at 25% anterior translation and at 2-mm construct displacement. RESULTS The baseline dimensions of the glenoid articular surface were comparable between the groups. The articular surface area after PGA was significantly larger (P = .006) with less articular stepoff (P = .030). PGA better approximated the intact state's external (P = .006) and total (P = .019) rotational range of motion in the scapular plane. The course of the humeral head apex after PGA better followed that of the intact state (P < .001). Resistance against anterior translation after PGA was not significantly different compared with after the Latarjet procedure. Greater linear stiffness (P = .031) and loading (P = .002) at 2-mm construct displacement were demonstrated in the PGA group. CONCLUSION In addressing anterior glenoid bone loss, PGA better approximated intact glenohumeral joint kinematics compared with the Latarjet procedure with less articular stepoff in a cadaveric model. PGA was comparable in resisting anterior translation while being significantly stronger against loading at 2-mm construct displacement. Further clinical studies are warranted to validate this novel procedure. CLINICAL RELEVANCE A 3D-printed PGA implant may offer an alternative treatment option for severe glenoid bone loss due to shoulder instability, overcoming the previous drawbacks of the Latarjet procedure, including altered kinematics, fixation failure, and hardware issues.
Collapse
Affiliation(s)
- Yong Tae Kim
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Kyung Jae Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Hoon Jang
- Department of Orthopedic Surgery, CM Hospital, Seoul, Republic of Korea
| | - Sook Yang
- Research Center, Cusmedi, Suwon, Republic of Korea
| | - Thay Q Lee
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Michelle McGarry
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Sae Hoon Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
28
|
Li Z, Lu M, Min L, Luo Y, Tu C. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. J Orthop Surg Res 2023; 18:648. [PMID: 37658436 PMCID: PMC10472683 DOI: 10.1186/s13018-023-04142-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND This study reports our experience in the treatment of aggressive pelvic GCT through wide resection assisted with patient-specific bone-cutting guides (PSBCGs) and subsequent reconstruction with 3D-printed personalized implants (3DPIs), aiming to present the operative technique of this method and evaluate its clinical efficacy. METHODS We retrospectively analyzed seven patients who underwent wide resection of pelvic GCT followed by reconstruction with 3DPIs from August 2019 to February 2021. There were two males and five females, with a mean age of 43 years. PSBCGs and 3DPIs were prepared using 3D-printing technology. The operational outcomes, local recurrence, radiological results, and any associated complications of this technique were assessed. And the functional outcomes were assessed according to the Musculoskeletal Tumor Society (MSTS) 93 functional score. RESULTS The mean follow-up time was 35.3 months (range 28-45 months). There was no intraoperative complication. Negative surgical margins were achieved in all patients. Postoperative pelvic radiographs showed that 3DPIs matched the shape and size of the bone defect. The anterior-posterior, inlet, and outlet pelvic radiograph demonstrated precise reconstruction consistent with the surgical planning. In addition, tomosynthesis-Shimadzu metal artifact reduction technology (T-SMART) showed good osseointegration at an average of three months after surgery (range 2-4 months). There was no local recurrence or tumor metastasis. The average MSTS score was 24.4 (range 23-27) at the last follow-up. Delayed wound healing was observed in one patient, and the wounds healed after debridement. Prosthesis-related complications were not detected during the follow-up, such as aseptic loosening or structure failure. CONCLUSIONS The treatment of aggressive pelvic GCTs through wide resection assisted with PSBCGs and subsequent reconstruction with 3DPIs is a feasible method, which provides good clinical results and reasonable functional outcomes.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
29
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
30
|
Valente G, Benedetti MG, De Paolis M, Donati DM, Taddei F. Differences in hip musculoskeletal loads between limbs during daily activities in patients with 3D-printed hemipelvic reconstructions following tumor surgery. Gait Posture 2023; 102:56-63. [PMID: 36924596 DOI: 10.1016/j.gaitpost.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Anatomical custom-made prostheses, thanks to computer-aided design and 3D-printing technology, help improve osseointegration and reduce mechanical complications in bone reconstructions following bone tumors. A recent quantitative analysis of long-term recovery in patients with 3D-printed reconstructions following pelvic tumor surgery showed asymmetries in ground reaction forces between limbs during different motor activities, while standing very good motor performance and quality of life. RESEARCH QUESTION We analyzed hip contact forces and muscle forces in that cohort of six patients with an innovative custom-made reconstruction of the hemipelvis, and we tested the hypothesis that asymmetries in ground reaction forces would result in more marked differences in musculoskeletal forces. METHODS State-of-the-art musculoskeletal modeling in an optimization-based inverse-dynamics workflow was used to calculate hip contact forces and muscle forces during five motor activities, and the differences between limbs were statistically evaluated across the motor activity cycles and on the force peaks. RESULTS The musculoskeletal loads were found to be not symmetric, as hip loads were generally higher in the contralateral limb. We found significant differences in considerable portions of the motor activities cycles except squat, load symmetry indices indicating a load increase (median up to 25%) on the contralateral limb, especially during stair descent and chair rise/sit, and significantly higher values in the contralateral limb at force peaks. SIGNIFICANCE We confirmed the hypothesis that residual asymmetries found in ground reaction forces were amplified when hip musculoskeletal loads were investigated, reflecting a shift of the loads toward the intact limb. Despite the general trend of higher loads found in the contralateral hip, this cannot be considered a risk of overloading, as both hips supported loads in a physiological range or lower, indicating a likely optimal recovery.
Collapse
Affiliation(s)
- Giordano Valente
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano De Paolis
- Department of Orthopaedics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
31
|
Zoltan J, Popescu D, Sanei SHR. A systematic review of follow-up results of additively manufactured customized implants for the pelvic area. Expert Rev Med Devices 2023; 20:233-244. [PMID: 36860182 DOI: 10.1080/17434440.2023.2183839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION While 3D printing of bone models for preoperative planning or customized surgical templating has been successfully implemented, the use of patient-specific additively manufactured (AM) implants is a newer application not yet well established. To fully evaluate the advantages and shortcomings of such implants, their follow-up results need to be evaluated. AREA COVERED This systematic review provides a survey of the reported follow-ups on AM implants used for oncologic reconstruction, total hip arthroplasty both primary and revision, acetabular fracture, and sacrum defects. EXPERT OPINION The review shows that Titanium alloy (Ti4AL6V) is the most common type of material system used due to its excellent biomechanical properties. Electron beam melting (EBM) is the predominant AM process for manufacturing implants. In almost all cases, porosity at the contact surface is implemented through the design of lattice or porous structures to enhance osseointegration. The follow-up evaluations show promising results, with only a small number of patients suffering from aseptic loosening, wear, or malalignment. The longest reported follow-up length was 120 months for acetabular cages and 96 months for acetabular cups. The AM implants have proven to serve as an excellent option to restore premorbid skeletal anatomy of the pelvis.
Collapse
Affiliation(s)
- Jeffrey Zoltan
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Hamot Hospital, Erie, PA, USA
| | - Diana Popescu
- Department of Robotics and Production Systems, University Politehnica of Bucharest, Bucharest, Romania
| | | |
Collapse
|
32
|
Hinckley NB, Beauchamp CP, Christopher ZK, Schwartz AJ, Ogunleye T, Goulding KA. What are the 2-year survivorship outcomes of custom hemipelvis reconstruction after hemipelvectomy and revision arthroplasty? The evolution of a custom ilium "monoflange". J Surg Oncol 2023; 127:480-489. [PMID: 36255157 DOI: 10.1002/jso.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Innovations in machined and three-dimensionally (3D) printed implant technology have allowed for customized complex pelvic reconstructions. We sought to determine the survivorship of custom hemipelvis reconstruction using ilium-only fixation at a minimum 2-year follow-up, their modes of failure, and the postoperative complications resulting from the procedure. METHODS A retrospective review identified 12 consecutive patients treated with custom hemipelvis reconstruction. Indications for surgery were bone tumor requiring internal hemipelvectomy (four patients) or multiply revised, failed hip arthroplasty with massive bone loss (eight patients). All patients had a minimum of 2-year follow-up with a mean of 60.5 months. Kaplan-Meier survivorship analysis was determined for all patients. Postoperative complications and reoperations were categorized for all patients. RESULTS At a mean of 60.5 months, 11 of 12 patients had retained their custom implant (92% survivorship). One implant was removed as a result of an acute periprosthetic joint infection (PJI). There were no cases of aseptic loosening. Seven of 12 patients required reoperation (three PJI; two dislocations; two superficial wound complications), with five patients going on to reoperation-free survival. CONCLUSIONS Custom hemipelvis reconstruction utilizing an ilium monoflange provides durable short-term fixation at a minimum 2-year follow-up. Reoperation for infection and dislocation is common.
Collapse
Affiliation(s)
| | | | | | - Adam J Schwartz
- Mayo Clinic Arizona, Department of Orthopedic Surgery, Phoenix, Arizona, USA
| | - Temi Ogunleye
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Krista A Goulding
- Mayo Clinic Arizona, Department of Orthopedic Surgery, Phoenix, Arizona, USA
| |
Collapse
|
33
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Zhu Y, Babazadeh-Naseri A, Dunbar NJ, Brake MRW, Zandiyeh P, Li G, Leardini A, Spazzoli B, Fregly BJ. Finite element analysis of screw fixation durability under multiple boundary and loading conditions for a custom pelvic implant. Med Eng Phys 2023; 111:103930. [PMID: 36792235 DOI: 10.1016/j.medengphy.2022.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Despite showing promising functional outcomes for pelvic reconstruction after sarcoma resection, custom-made pelvic implants continue to exhibit high complication rates due to fixation failures. Patient-specific finite element models have been utilized by researchers to evaluate implant durability. However, the effect of assumed boundary and loading conditions on failure analysis results of fixation screws remains unknown. In this study, the postoperative stress distributions in the fixation screws of a state-of-the-art custom-made pelvic implant were simulated, and the risk of failure was estimated under various combinations of two bone-implant interaction models (tied vs. frictional contact) and four load cases from level-ground walking and stair activities. The study found that the average weighted peak von Mises stress could increase by 22-fold when the bone-implant interactions were modeled with a frictional contact model instead of a tied model, and the likelihood of fatigue and pullout failure for each screw could change dramatically when different combinations of boundary and loading conditions were used. The inclusion of additional boundary and loading conditions led to a more reliable analysis of fixation durability. These findings demonstrated the importance of simulating multiple boundary conditions and load cases for comprehensive implant design evaluation using finite element analysis.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | | | - Nicholas J Dunbar
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | - Matthew R W Brake
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | - Payam Zandiyeh
- Department of Orthopedic Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Geng Li
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Benedetta Spazzoli
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, Texas, USA.
| |
Collapse
|
35
|
Liang H, Wang J, Yang Y, Niu T, Du Z, Zang J, Wei R, Yan T, Tang X, Guo W. Reconstruction With a 3D-Printed Megaprosthesis With Ankle Arthrodesis After Distal Tibial Tumor Resection. Foot Ankle Int 2022; 43:1450-1459. [PMID: 35932107 DOI: 10.1177/10711007221115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reconstruction after en bloc resection of the distal tibia has remained an unsettled issue despite many attempts with bone grafts or prostheses in the past. Failures of the previous methods have been attributed to inadequate mechanical strength, poor articular stability, failed osseointegration, and poor soft tissue coverage. To overcome these shortcomings, we designed and applied a 3D-printed megaprosthesis with ankle arthrodesis. METHODS A total of 13 patients underwent resection of a distal tibial tumor and reconstruction with a 3D-printed distal tibial megaprosthesis between January 2017 and November 2020. Mean age was 14.9±6.5 years. Diagnoses included 11 cases of osteosarcoma and 1 case each of low-grade phosphaturic mesenchymal tumor and rhabdomyosarcoma. Baseline characteristics, operative data, complication profiles, and oncologic, and functional outcomes were reviewed and analyzed. RESULTS All 13 cases attained a wide or marginal resection. During a mean follow-up of 26.8±10.6 months, 1 patient experienced local recurrence and distant metastasis, whereas 3 other patients only developed distant metastasis. Periprosthetic infection subsequent to paronychia occurred in 1 patient 24 months after the operation. No other complications were observed. By the last follow-up, the mean MSTS-93 score was 28.0±1.5. CONCLUSION In this relatively small cohort with short-term follow-up, reconstruction with the 3D-printed megaprosthesis with ankle arthrodesis was found to be a safe and efficacious method after resection of a distal tibial malignancy.
Collapse
Affiliation(s)
- Haijie Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Jichuan Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Yi Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Tianli Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Jie Zang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Ran Wei
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Xicheng District, Beijing, China
| |
Collapse
|
36
|
Park JW, Park H, Kim JH, Kim HM, Yoo CH, Kang HG. Fabrication of a lattice structure with periodic open pores through three-dimensional printing for bone ingrowth. Sci Rep 2022; 12:17223. [PMID: 36241776 PMCID: PMC9568544 DOI: 10.1038/s41598-022-22292-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 01/06/2023] Open
Abstract
Lattice structures for implants can be printed using metal three-dimensional (3D)-printing and used as a porous microstructures to enhance bone ingrowth as orthopedic implants. However, designs and 3D-printed products can vary. Thus, we aimed to investigate whether targeted pores can be consistently obtained despite printing errors. The cube-shaped specimen was printed with one side 15 mm long and a full lattice with a dode-thin structure of 1.15, 1.5, and 2.0 mm made using selective laser melting. Beam compensation was applied, increasing it until the vector was lost. For each specimen, the actual unit size and strut thickness were measured 50 times. Pore size was calculated from unit size and strut thickness, and porosity was determined from the specimen's weight. The actual average pore sizes for 1.15, 1.5, and 2.0 mm outputs were 257.9, 406.2, and 633.6 μm, and volume porosity was 62, 70, and 80%, respectively. No strut breakage or gross deformation was observed in any 3D-printed specimens, and the pores were uniformly fabricated with < 10% standard deviation. The actual micrometer-scaled printed structures were significantly different to the design, but this error was not random. Although the accuracy was low, precision was high for pore cells, so reproducibility was confirmed.
Collapse
Affiliation(s)
- Jong Woong Park
- grid.410914.90000 0004 0628 9810Orthopaedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang-si, Gyeonggi-do Republic of Korea ,grid.410914.90000 0004 0628 9810Surgical Oncology branch, Division of Clinical Research, National Cancer Center, Goyang-si, Gyeonggi-do Republic of Korea
| | - Hyenmin Park
- grid.410914.90000 0004 0628 9810Surgical Oncology branch, Division of Clinical Research, National Cancer Center, Goyang-si, Gyeonggi-do Republic of Korea
| | - June Hyuk Kim
- grid.410914.90000 0004 0628 9810Orthopaedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang-si, Gyeonggi-do Republic of Korea
| | | | | | - Hyun Guy Kang
- grid.410914.90000 0004 0628 9810Orthopaedic Oncology Clinic, Center for Rare Cancers, National Cancer Center, Goyang-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
37
|
Zhu D, Wang L, Fu J, Guo Z, Wang Z, Fan H. Comparison of customized 3D-printed prosthesis and screw-rod-cage system reconstruction following resection of periacetabular tumors. Front Oncol 2022; 12:953266. [PMID: 36303843 PMCID: PMC9592706 DOI: 10.3389/fonc.2022.953266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Various operative methods are used for reconstructing pelvic girdle after resection of primary malignant periacetabular tumor has been reported. The objective of this study was to evaluate the accuracy, effectiveness, and safety of customized three dimensional-printed prosthesis (3DP) in the reconstruction of bone defects compared with conventional reconstruction using the screw-rod-cage system. Methods A retrospective case–control analysis of 40 patients who underwent pelvic tumor resection and reconstruction with a customized 3D-printed prosthesis (3DP), or screw-rod-cage system (SRCS) between January 2010 and December 2019 was performed. The minimum follow-up time for patients alive was 2 years. Blood loss, operation time, complications, surgical margin, local recurrence, distant metastases, status at time of latest follow-up, MSTS-93 score, Harris hip score, and postoperative radiographic parameters were recorded. Moreover, overall survival, tumor-free survival, and prosthesis survival rates in both groups were compared. Results Customized 3DP reconstruction was performed in 15 patients, and SRCS reconstruction was done in 25 patients. The group of patients treated with customized 3DP reconstruction had significantly shorter operation time (323.7 ± 83.7 vs. 393.6 ± 98.8 min; P = 0.028) and more precise (all P < 0.05) radiographic reconstruction parameters than patients in the SRCS group. Fewer complications (P = 0.026), better MSTS score (P = 0.030), and better Harris hip score (P = 0.016) were achieved in the 3DP group. Furthermore, the survival rate of prosthesis was also significantly better in the 3DP group (P = 0.039). However, blood loss, surgical margin, local recurrence, distant metastases, and status at time of latest follow-up had no significant difference between two groups. Conclusion Compared with the screw-rod-cage system reconstruction, the customized 3D-printed prosthesis reconstruction is equally safe and effective, but it is more accurate and time-saving and is associated with fewer complications.
Collapse
Affiliation(s)
- Dongze Zhu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Fu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Guo
- Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhen Wang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hongbin Fan,
| |
Collapse
|
38
|
Park JW, Kang HG. Application of 3-dimensional printing implants for bone tumors. Clin Exp Pediatr 2022; 65:476-482. [PMID: 34942688 PMCID: PMC9561186 DOI: 10.3345/cep.2021.01326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional (3D) additive manufacturing has recently been used in various medical fields. Among them, orthopedic oncology is one that utilizes it most actively. Bone and tumor modeling for surgical planning, personalized surgical instrument fabrication, and implant fabrication are typical applications. The 3D-printed metal implants using titanium alloy powder have created a revolutionary change in bone reconstruction that can be customized to all body areas; however, bioprinting remains experimental and under active study. This review explores the practical applications of 3D printing in orthopedic oncology and presents a representative case. The 3D-printed implant can replace the conventional tumor prosthesis and auto/allobone graft, thereby personalizing bone reconstruction. Biologic bone reconstruction using biodegradable or bioprinted materials beyond metal may be possible in the future.
Collapse
Affiliation(s)
- Jong Woong Park
- Orthopaedic Oncology Clinic, National Cancer Center, Goyang, Korea.,Division of Convergence Technology, National Cancer Center, Goyang, Korea
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, National Cancer Center, Goyang, Korea.,Division of Convergence Technology, National Cancer Center, Goyang, Korea
| |
Collapse
|
39
|
Liu B, Hou G, Yang Z, Li X, Zheng Y, Wen P, Liu Z, Zhou F, Tian Y. Repair of critical diaphyseal defects of lower limbs by 3D printed porous Ti6Al4V scaffolds without additional bone grafting: a prospective clinical study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:64. [PMID: 36104513 PMCID: PMC9474430 DOI: 10.1007/s10856-022-06685-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/22/2022] [Indexed: 05/25/2023]
Abstract
The repair of critical diaphyseal defects of lower weight-bearing limbs is an intractable problem in clinical practice. From December 2017, we prospectively applied 3D printed porous Ti6Al4V scaffolds to reconstruct this kind of bone defect. All patients experienced a two-stage surgical process, including thorough debridement and scaffold implantation. With an average follow-up of 23.0 months, ten patients with 11 parts of bone defects were enrolled in this study. The case series included three females and seven males, their defect reasons included seven parts of osteomyelitis and four parts of aseptic nonunion. The bone defects located at femur (five parts) and tibia (six parts), with an average defect distance of 12.2 cm. Serial postoperative radiologic follow-ups displayed a continuous process of new bone growing and remodeling around the scaffold. One patient suffered tibial varus deformity, and he underwent a revision surgery. The other nine patients achieved scaffold stability. No scaffold breakage occurred. In conclusion, the implantation of 3D printed Ti6Al4V scaffold was feasible and effective to reconstruct critical bone defects of lower limbs without additional bone grafting. Graphical abstract.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Guojin Hou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongwei Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
40
|
Valente G, Benedetti MG, Paolis MD, Sambri A, Frisoni T, Leardini A, Donati DM, Taddei F. Long-term functional recovery in patients with custom-made 3D-printed anatomical pelvic prostheses following bone tumor excision. Gait Posture 2022; 97:73-79. [PMID: 35914386 DOI: 10.1016/j.gaitpost.2022.07.248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anatomical custom-made prostheses make it possible to reconstruct complicated bone defects following excision of bone tumors, thanks to 3D-printed technology. To date, clinical measures have been used to report clinical-functional outcome and provide evidence for the effectiveness of this new surgical approach. However, there are no studies that quantified the achievable recovery during common activities by using instrumental clinical-functional evaluation in these patients. RESEARCH QUESTION What is the motor performance, functional outcome and quality of life in patients with custom-made 3D-printed pelvic prostheses following bone tumor? METHODS To analyze motor performance, six patients performed motion analysis during five motor activities at follow-up of 32 ± 18 months. Joint angles, ground reaction forces and joint moments of the operated and contralateral limbs were compared. On-off activity of lower-limb muscles were calculated from electromyography and compared to a healthy matched population. To analyze functional outcome and quality of life, differences in measured hip abductor strength between limbs were evaluated, as well as clinical-functional scores (Harris Hip Score, Barthel Index, Musculoskeletal Tumor Society score), and quality of life (SF-36 health survey). RESULTS We found only slight differences in joint kinematics when comparing operated and contralateral limb. The activity of gluteal muscles was normal, while hamstrings showed out-of-phase activities. Ground reaction forces and hip moments showed asymmetries between limbs, particularly in more demanding motor activities. We found a mean difference in hip abductor strength of 48 ± 82 N between limbs, good clinical-functional scores, and quality of life scores within normative. SIGNIFICANCE Our study showed optimal long-term results in functional recovery, mainly achieved through recovery of the gluteal function, although minor impairments were found, which may be considered for future improvement of this innovative surgery. The effect of a more loaded contralateral limb on internal loads and long-term performance of the implant remains unknown and deserves further investigation.
Collapse
Affiliation(s)
- Giordano Valente
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Massimiliano De Paolis
- Department of Orthopaedics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Andrea Sambri
- Department of Orthopaedics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Tommaso Frisoni
- Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
41
|
Liu B, Lv Y, Li X, Liu Z, Zheng Y, Wen P, Liu N, Huo Y, Zhou F, Tian Y. Influence of different fixation modes on biomechanical conduction of 3D printed prostheses for treating critical diaphyseal defects of lower limbs: A finite element study. Front Surg 2022; 9:959306. [PMID: 36090321 PMCID: PMC9448880 DOI: 10.3389/fsurg.2022.959306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Applying 3D printed prostheses to repair diaphyseal defects of lower limbs has been clinically conducted in orthopedics. However, there is still no unified reference standard for which the prosthesis design and fixation mode are more conducive to appropriate biomechanical conduction. Methods We built five different types of prosthesis designs and fixation modes, from Mode I to Mode V. Finite element analysis (FEA) was used to study and compare the mechanical environments of overall bone-prosthesis structure, and the maximum stress concentration were recorded. Additionally, by comparing the maximum von Mises stress of bone, intramedullary (IM) nail, screw, and prosthesis with their intrinsic yield strength, the risk of fixation failure was further clarified. Results In the modes in which the prosthesis was fixed by an interlocking IM nail (Mode I and Mode IV), the stress mainly concentrated at the distal bone-prosthesis interface and the middle-distal region of nail. When a prosthesis with integrally printed IM nail and lateral wings was implanted (Mode II), the stress mainly concentrated at the bone-prosthesis junctional region. For cases with partially lateral defects, the prosthesis with integrally printed wings mainly played a role in reconstructing the structural integrity of bone, but had a weak role in sharing the stress conduction (Mode V). The maximum von Mises stress of both the proximal and distal tibia appeared in Mode III, which were 18.5 and 47.1 MPa. The maximum peak stress shared by the prosthesis, screws and IM nails appeared in Mode II, III and I, which were 51.8, 87.2, and 101.8 MPa, respectively. These peak stresses were all lower than the yield strength of the materials themselves. Thus, the bending and breakage of both bone and implants were unlikely to happen. Conclusion For the application of 3D printed prostheses to repair diaphyseal defects, different fixation modes will lead to the change of biomechanical environment. Interlocking IM nail fixation is beneficial to uniform stress conduction, and conducive to new bone regeneration in the view of biomechanical point. All five modes we established have reliable biomechanical safety.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yang Lv
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Ning Liu
- R&D Center, AK Medical Co., Ltd., Beijing, China
| | - Yaping Huo
- R&D Center, AK Medical Co., Ltd., Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- Correspondence: Fang Zhou Yun Tian
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- Correspondence: Fang Zhou Yun Tian
| |
Collapse
|
42
|
Computer-Aided Design and 3D Printing of Hemipelvic Endoprosthesis for Personalized Limb-Salvage Reconstruction after Periacetabular Tumor Resection. Bioengineering (Basel) 2022; 9:bioengineering9080400. [PMID: 36004925 PMCID: PMC9405276 DOI: 10.3390/bioengineering9080400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
3D-printed hemipelvic endoprosthesis is an emerging solution for personalized limb-salvage reconstruction after periacetabular tumor resection. Further clinical studies are still required to report its surgical characteristics, outcomes, benefits and drawbacks. Sixteen consecutive patients underwent periacetabular tumor wide resection and pelvic reconstruction with a 3D-printed hemipelvic endoprosthesis from 2018 to 2021. The surgical characteristics and outcomes are described. The mean follow-up duration was 17.75 months (range, 6 to 46 months). Five patients underwent surgery for type I + II resection and reconstruction, seven for type II + III resection and reconstruction, three for type II resection and reconstruction, and one for type I + II + IV resection and reconstruction. The incidence of postoperative complication was 12.5% (2/16) for deep venous thrombosis (DVT), 12.5% (2/16) for pneumonia, and 12.5% (2/16) for would deep or superficial infection. During follow-up, two patients (12.5%) suffered hip dislocation and underwent revision surgery. CT demonstrated an obvious prosthetic porous structure–bone fusion after follow-up of at least 6 months. At the final follow-up, 12 lived with no evidence of disease while four lived with disease; no patients experienced pain; and 15 had independent ambulation, with a mean Musculoskeletal Tumor Society (MSTS) score of 85.8% (range, 26.7% to 100%). 3D-printed hemipelvic endoprosthesis facilitates wide resection of periacetabular tumor and limb-salvage reconstruction, thus resulting in good oncological and functional outcomes. The custom-made nature is able to well mimic the skeletal anatomy and microstructure and promote osseointegration. Perioperative complications and rehabilitation exercise still need to be stressed for this engineering technology-assisted major orthopedic surgery.
Collapse
|
43
|
郭 卫. [Pelvic limb-salvage surgery for malignant tumors: 30 years of progress in China]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:781-789. [PMID: 35848171 PMCID: PMC9288902 DOI: 10.7507/1002-1892.202112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Indexed: 01/24/2023]
Abstract
This article reviews the development and progress in the field of limb salvage treatment, surgical techniques, and function reconstruction of pelvic malignant tumors in China in the past 30 years. Based on the surgical classification of pelvic tumor resection in different parts, the development of surgical techniques and bone defect repair and reconstruction methods were described in detail. In recent years, in view of the worldwide problem of biological reconstruction after pelvic tumor resection, Chinese researchers have systematically proposed the repair and reconstruction methods and prosthesis design for bone defects after resection of different parts for the first time in the world. In addition, a systematic surgical classification (Beijing classification) was first proposed for the difficult situation of pelvic tumors involving the sacrum, as well as the corresponding surgical plan and repair and reconstruction methods. Through unremitting efforts, the limb salvage rate of pelvic malignant tumors in China has reached more than 80%, which has preserved limbs and restored walking function for the majority of patients, greatly reduced surgical complications, and achieved internationally remarkable results.
Collapse
Affiliation(s)
- 卫 郭
- 北京大学人民医院骨肿瘤科(北京 100044)Department of Orthopaedic Oncology, Peking University, People’s Hospital, Beijing, 100044, P. R. China
- 北京大学人民医院肉瘤及罕见肿瘤诊疗中心(北京 100044)Sarcoma and Rare Tumor Center, Peking University, People’s Hospital, Beijing, 100044, P. R. China
| |
Collapse
|
44
|
Hu X, Lu M, Wang J, Li L, Min L, Tu C. Combined and Modified Gibson and Ilioinguinal Approaches in Type II + III Internal Hemipelvectomy for Periacetabular Tumors. Front Oncol 2022; 12:934812. [PMID: 35912222 PMCID: PMC9326475 DOI: 10.3389/fonc.2022.934812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background The routine iliofemoral approach and its modifications in type II+III resection require extensive skin incision and massive periacetabular muscle detachment, leading to prolonged hospital stay, increased complication incidence, and impaired lower limb function. Under the management of an enhanced recovery after surgery (ERAS) protocol, a combined and modified Gibson and ilioinguinal (MGMII) approach was used to avoid unnecessary soft tissue trauma during tumor resection and therefore advantageous to patients’ return to normal life. Methods Twenty-five patients with type II + III (including type II) periacetabular tumors who underwent reconstruction with 3D printed customized endoprostheses at our center between January 2017 and March 2019 were included in this study. There were 13 cases using MGMII approach and 12 cases using iliofemoral approach. The operation duration and blood loss were assessed by chart review. The surgical margin was evaluated by the histopathological studies. The reconstruction accuracy, the abductor muscle strength, the 1993 version of the Musculoskeletal Tumor Society (MSTS-93), the Harris Hip scores (HHS), and the limp score were evaluated. Complications were recorded after reviewing the patients’ records. Results The operative duration and blood loss in MGMII group were shorter than those in the iliofemoral group, but the postoperative hemoglobin was slightly higher than that in the iliofemoral group. The MGMII group had stronger postoperative hip abductors, better functional restoration, and relatively fewer patients with higher limp scores. No complication was observed in the MGMII group. In the iliofemoral group, three patients encountered wound healing delay, and one patient suffered deep infection. Conclusions The MGMII approach can better expose the posterior column of the acetabulum, especially the ischial tuberosity, which is beneficial for avoiding tumor rupture during resection. The MGMII approach also helps to preserve residual muscle function, such as the origin of the gluteus medius, while ensuring the extent of resection.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Longqing Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Li Min, jacky–; Chongqi Tu,
| | - Chongqi Tu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Li Min, jacky–; Chongqi Tu,
| |
Collapse
|
45
|
Xing D, Li R, Li JJ, Tao K, Lin J, Yan T, Zhou D. Catastrophic Periprosthetic Osteolysis in Total Hip Arthroplasty at 20 Years: A Case Report and Literature Review. Orthop Surg 2022; 14:1918-1926. [PMID: 35819098 PMCID: PMC9363776 DOI: 10.1111/os.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Periprosthetic osteolysis is a serious complication following total hip arthroplasty (THA). However, most orthopedic surgeons only focus on bone loss and hip reconstruction. Thus, it was required to understand the treatment algorithm for periprosthetic osteolysis integrally. CASE PRESENTATION A 52-year-old Asian male presented with chronic hip pain. A mass appeared on the medial side of the proximal left thigh at more than 20 years after bilateral THA. Radiographs revealed catastrophic periprosthetic osteolysis, especially on the acetabular side. Large amounts of necrotic tissue and bloody fluids were thoroughly debrided during revision THA. A modular hemipelvic prosthesis was used for revision of the left hip. Four years later, the patient presented with right hip pain, where a mass appeared on the medial side of the proximal right thigh. A primary acetabular implant with augment was used for revision of the right hip. Laboratory evaluation of bloody fluid retrieved from surgery revealed elevated levels of inflammatory markers. CONCLUSION Inflammatory responses to polyethylene wear debris can lead to severe bone resorption and aseptic loosening in the long-term following THA. Therefore, in spite of revision THA, interrupting the cascade inflammatory might be the treatment principle for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Rujun Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Ke Tao
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Diange Zhou
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| |
Collapse
|
46
|
[Application of modified Gibson combined with modified ilioinguinal approach in treatment of Enneking Ⅱ+ Ⅲ pelvic malignant tumors with three-dimensional printed hemipelvic prosthesis replacement]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:796-803. [PMID: 35848173 PMCID: PMC9288909 DOI: 10.7507/1002-1892.202203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the surgical skills of modified Gibson combined with modified ilioinguinal (MGMII) approach in the treatment of Enneking Ⅱ+Ⅲ pelvic malignant tumors in the three-dimensional (3D) printed customized integrated hemipelvic prosthesis, and to evaluate the convenience and accuracy of the surgical approach and the short-term effectiveness. METHODS Between January 2017 and March 2019, 7 patients with Enneking Ⅱ+Ⅲ pelvic malignant tumors were treated with tumor resection and 3D printed hemipelvic prosthesis replacement via MGMII approach. There were 6 males and 1 female. The age ranged from 23 to 68 years, with an average of 43.7 years. There was 1 chondrosarcoma, 1 Ewing's sarcoma, 1 osteosarcoma, 1 malignant Schwannoma, 2 metastatic renal clear cell carcinoma, and 1 metastatic hepatocellular carcinoma. The Enneking stage of 4 cases of primary malignant tumor was stage ⅡB. The disease duration was 6-12 months, with an average of 9.5 months. The preoperative Harris hip score (HHS) was 82.1±1.4 and the Musculoskeletal Tumor Society (MSTS) score was 21.4±1.1. The tumor size by imaging examination was 5.1-9.1 cm, with an average of 6.9 cm. The operation time, intraoperative blood loss, postoperative blood transfusion volume, and postoperative complications were recorded. Postoperative pathological examination confirmed tumor residue according to R classification criteria. The lower limb length, acetabular height, acetabular eccentricity, abduction angle, and anteversion angle were measured and the bone integration was observed by imaging review. Bilateral abductor muscle strengths were measured, and joint function was evaluated by MSTS score and HHS score. RESULTS All operations were successfully completed. The operation time was 210-360 minutes (mean, 280.0 minutes); the intraoperative blood loss was 1 300-2 500 mL (mean, 1 785.7 mL); the postoperative blood transfusion volume was 0-11 U (mean, 6.1 U). Postoperative pathological examination confirmed R0 resection assisted by osteotomy guide plate. All incisions healed by first intention. All patients were followed up 30-48 months (mean, 41.3 months). At last follow-up, the imaging review showed the good osseointegration in all 7 cases. There was no significant difference in the lower limb length, acetabular height, acetabular eccentricity, abduction angle, and anteversion angle between the affected side and the healthy side ( P>0.05), all of which met the requirements of anatomical reconstruction. At 3 months after operation, the ratios of muscle strength between the affected side and the healthy side was 68.29%±7.41% at 3 months and 89.86%±2.79% at 12 months, showing a significant difference between the two time points ( t=8.242, P=0.000). At last follow-up, the MSTS score and HHS score were 27.3±0.8 and 96.6±1.4, respectively, which significantly improved when compared with those before operation ( P<0.05). None of the patients had assisted walking at last follow-up. There was no recurrence, death, or complications such as deep infection, dislocation of the prosthesis, or fracture of the prosthesis or screw. CONCLUSION MGMII approach can expose the posterior column of the acetabulum, especially the ischial tubercle, which is helpful to avoid tumor rupture during tumor resection and preserve the muscle functions such as gluteus medius and iliac muscle while ensuring the resection scope.
Collapse
|
47
|
[Research on three-dimensional printing technology based on three-dimensional multimodality imaging to assist the operation of malignant bone tumors of limbs]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:804-810. [PMID: 35848174 PMCID: PMC9288904 DOI: 10.7507/1002-1892.202202060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the role and effectiveness of three-dimensional (3D) printing technology based on 3D multimodality imaging in surgical treatment of malignant bone tumors of limbs. METHODS The clinical data of 15 patients with malignant bone tumors of the limbs who met the selection criteria between January 2016 and January 2019 were retrospectively analyzed. There were 6 males and 9 females, with a median age of 34 years (range, 17-73 years). There were 5 cases of osteosarcoma, 3 cases of chondrosarcoma, 2 cases of Ewing sarcoma, 1 case of hemangiosarcoma, 1 case of ameloblastoma, and 3 cases of metastatic carcinoma. The tumors were located in the humerus in 5 cases, ulna in 2 cases, femur in 3 cases, and tibia in 5 cases. The disease duration was 2-8 months (median, 4 months). Preoperative 3D multimodality imaging was administered first, based on which computer-assisted preoperative planning was performed, 3D printed personalized special instruments and prostheses were designed, and in vitro simulation of surgery was conducted, successively. Two cases underwent knee arthroplasty, 2 had semi-shoulder arthroplasty, 2 had proximal ulna arthroplasty, and 9 had joint-preserving surgery. Surgical margins, operation time, intraoperative blood loss, surgical complications, Musculoskeletal Tumor Society (MSTS) score, and oncological outcome were collected and analyzed. RESULTS All 15 patients completed the operation according to the preoperative plan, and the surgical margins were all obtained wide resection margins. The operation time was 80-240 minutes, with a median of 150 minutes. The intraoperative blood loss was 100-400 mL, with a median of 200 mL. There was no significant limitation of limb function due to important blood vessels or nerves injury during operation. One case of superficial infection of the incision was cured after dressing change, and the incisions of the other patients healed by first intention. All patients were followed up 6-48 months, with a median of 24 months. Two of the patients died of lung metastasis at 6 and 24 months after operation, respectively. No local recurrence, prosthesis dislocation, or prosthesis loosening occurred during follow-up. At last follow-up, the MSTS score ranged from 23 to 30, with an average of 25. CONCLUSION 3D printing tecnology, based on 3D multimodality imaging, facilitates precise resection and reconstruction for malignant bone tumors of limbs, resulting in improved oncological and functional outcome.
Collapse
|
48
|
Xu S, Guo Z, Shen Q, Peng Y, Li J, Li S, He P, Jiang Z, Que Y, Cao K, Hu B, Hu Y. Reconstruction of Tumor-Induced Pelvic Defects With Customized, Three-Dimensional Printed Prostheses. Front Oncol 2022; 12:935059. [PMID: 35847863 PMCID: PMC9282862 DOI: 10.3389/fonc.2022.935059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Reconstruction of pelvis girdle stability after tumor-induced hemipelvectomy remains challenging. We surgically treated 13 patients with custom-made, three-dimensional printed hemipelvic prostheses. We aim to identify the preliminary outcomes for patients who have been managed with more mixed regions of prosthetic pelvic reconstruction and the feasibility of two reconstructive systems. Methods Seven male patients and 6 female patients treated at our center between January 2019 and May 2021 were included. There were 11 primary sarcomas and 2 solitary bone metastases. After en bloc tumor resection, two types of personalized, three-dimensional printed prostheses were fixed to restore the stability and rebuild the load transfer. The position of the reconstructed hemipelvis was evaluated on an anteroposterior plain radiograph. The complications and outcomes were traced. One amputation specimen was discovered through histological analysis of the porous structure. Results The operative duration was 467 ± 144 min, and the blood loss was 3,119 ± 662 ml. During a follow-up of 22.4 ± 8.5 months, two patients had delayed wound healing and one had a second-stage flap transfer. One patient with osteosarcoma died of pulmonary metastasis 27 months after surgery. Two patients with marginal resection suffered from local recurrence and had extra surgeries. One patient had traumatic hip dislocation 2 months after surgery and manipulative reduction was performed. The acetabular inclination of the affected side was 42.2 ± 4.3°, compared with 42.1 ± 3.9° on the contralateral side. The horizontal distance between the center of the femoral head and the middle vertical line was 10.4 ± 0.6 cm, while the reconstructed side was 9.8 ± 0.8 cm. No significant difference in acetabular position after surgery was found (p > 0.05). The amputation specimen harvested from one patient with local recurrence demonstrated bone and soft tissue ingrowth within the three-dimensional printed trabecular structure. Walking ability was preserved in all patients who are still alive and no prosthesis-related complications occurred. The MSTS score was 22.0 ± 3.7. Conclusions Both types of custom-made, three-dimensional printed prostheses manifested excellent precision, mechanical stability, and promising functional rehabilitation. The porous structure exhibited favorable histocompatibility to facilitate the ingrowth of bone and soft tissue.
Collapse
|
49
|
Liu B, Li X, Qiu W, Liu Z, Zhou F, Zheng Y, Wen P, Tian Y. Mechanical Distribution and New Bone Regeneration After Implanting 3D Printed Prostheses for Repairing Metaphyseal Bone Defects: A Finite Element Analysis and Prospective Clinical Study. Front Bioeng Biotechnol 2022; 10:921545. [PMID: 35721863 PMCID: PMC9204204 DOI: 10.3389/fbioe.2022.921545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Critical metaphyseal bone defects caused by nonunion and osteomyelitis are intractable to repair in clinical practice owing to the rigorous demanding of structure and performance. Compared with traditional treatment methods, 3D printing of customized porous titanium alloy prostheses offer feasible and safe opportunities in repairing such bone defects. Yet, so far, no standard guidelines for optimal 3D printed prostheses design and fixation mode have been proposed to further promote prosthesis stability as well as ensure the continuous growth of new bone. In this study, we used a finite element analysis (FEA) to explore the biomechanical distribution and observed new bone regeneration in clinical practice after implanting 3D printed prostheses for repairing metaphyseal bone defects. The results reflected that different fixation modes could result in diverse prosthesis mechanical conductions. If an intramedullary (IM) nail was applied, the stress mainly conducted equally along the nail instead of bone and prosthesis structure. While the stress would transfer more to the lateral bone and prosthesis’s body when the printed wing and screws are selected to accomplish fixation. All these fixation modes could guarantee the initial and long-term stability of the implanted prosthesis, but new bone regenerated with varying degrees under special biomechanical environments. The fixation mode of IM nail was more conducive to new bone regeneration and remodeling, which conformed to the Wolff’s law. Nevertheless, when the prosthesis was fixed by screws alone, no dense new callus could be observed. This fixation mode was optional for defects extremely close to the articular surface. In conclusion, our innovative study could provide valuable references for the fixation mode selection of 3D printed prosthesis to repair metaphyseal bone defect.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Weipeng Qiu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- *Correspondence: Peng Wen, ; Yun Tian,
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Peng Wen, ; Yun Tian,
| |
Collapse
|
50
|
Guo Z, Zhang R, Que Y, Hu B, Xu S, Hu Y. Case Report: 3D-Printed Prosthesis for Limb Salvage and Joint Preservation After Tibial Sarcoma Resection. Front Surg 2022; 9:873272. [PMID: 35711702 PMCID: PMC9195185 DOI: 10.3389/fsurg.2022.873272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Reconstruction of massive tibial defects in ankle joint-preserving surgery remains challenging though biological and prosthetic methods have been attempted. We surgically treated a patient with only 18-mm distal tibia remaining and reconstructed with a unique three-dimensional printed prosthesis. Case Presentation, Intervention, and Outcomes A 36-year-old male presented to our clinic with complaints of gradually swelling left calf and palpable painless mass for five months. Imageological exam indicated a lesion spanning the entire length of the tibia and surrounding the vascular plexus. Diagnosis of chondrosarcoma was confirmed by biopsy. Amputation was initially recommended but rejected, thus a novel one-step limb-salvage procedure was performed. After en-bloc tumor resection and blood supply rebuilding, a customized, three-dimensional printed prosthesis with porous interface was fixed that connected the tumor knee prosthesis and distal ultra-small bone segment. During a 16-month follow-up, no soft tissue or prosthesis-related complications occurred. The patient was alive with no sign of recurrence or metastasis. Walking ability and full tibiotalar range of motion were preserved. Conclusions Custom-made, three-dimensional printed prosthesis manifested excellent mechanical stability during the follow-up in this joint-preserving surgery. Further investigation of the durability and rate of long-term complications is needed to introduce to routine clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Hu
- Correspondence: Shenglin Xu Yong Hu
| |
Collapse
|