1
|
Hao H, Bao F, Wang Y, Li N, Gong Y. Peptide therapy: new promising therapeutics for acute kidney injury. Drug Discov Today 2025:104377. [PMID: 40348078 DOI: 10.1016/j.drudis.2025.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Acute kidney injury (AKI) is a common fatal condition among hospitalized patients. AKI may be induced by a variety of complicating factors such as sepsis, ischemia-reperfusion injury, nephrotoxic substances, and rhabdomyolysis. At present, symptomatic treatment is mainly used, and there are no US Food and Drug Administration (FDA)-approved drugs for the prevention or treatment of AKI. Peptides have become a promising area of research in AKI treatment because of their high efficiency and low toxicity. In this paper, we systematically review the experimental advancements of peptide therapy for AKI, analyze the mechanism of peptide action in different pathological models, discuss the challenges facing peptide therapy, and provide a scientific basis for further clinical research.
Collapse
Affiliation(s)
- Herui Hao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Fengjiao Bao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Yuru Wang
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
2
|
Wang C, Li H, Li F, Yang Y, Xu Z, Gao T, Li R, Zhang R, Mu Y, Guo Z, Guo Q, Liu S. The mitochondrial protectant SS31 optimized decellularized Wharton's jelly scaffold improves allogeneic chondrocyte implantation-mediated articular cartilage repair. J Orthop Translat 2025; 52:126-137. [PMID: 40291636 PMCID: PMC12032180 DOI: 10.1016/j.jot.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background The process of allogeneic chondrocyte implantation entails obtaining donor chondrocytes, culturing them in a medium enriched with growth factors, and then introducing them-either individually or in conjunction with biocompatible scaffolds-into areas of cartilage damage. While promising, this approach is hindered by mitochondrial dysfunction in the implanted chondrocytes. Methods This research introduced an innovative approach by creating a new type of scaffold derived from Decellularized Umbilical Cord Wharton's Jelly (DUCWJ) extracted from human umbilical cords. The scaffold was manufactured using procedures involving decellularization and lyophilization. The resulting scaffold demonstrated superior characteristics, including high porosity, hydrophilic properties, and excellent biocompatibility. To enhance its function, SS31 peptides, known for their mitochondrial-protective properties, were chemically bonded to the scaffold surface, creating an SS31@DUCWJ system. This system aims to protect chondrocytes and regulate the mitochondrial respiratory chain (MRC), thereby improving cartilage repair mediated by allogeneic chondrocyte implantation. Results In vitro studies have shown that SS31 effectively attenuates metabolic dysfunction, extracellular matrix degradation, oxidative stress, inflammation, and mitochondrial damage induced by serial cell passages. Complementary in vivo experiments showed that the SS31@DUCWJ scaffold promoted regeneration of healthy articular cartilage in femoral condylar defects in rabbits. Conclusions This SS31-modified porous decellularized scaffold represents an innovative biomaterial with anti-inflammatory properties and targeted mitochondrial regulation. It offers a promising new approach for treating articular cartilage injuries. The translational potential of this article Our study was the first to successfully load the mitochondrial protectant SS31 onto a DUCWJ hydrogel scaffold for localized drug delivery. This method is highly efficacious in repairing cartilage defects and offers a promising new avenue for the treatment of such conditions.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fakai Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yongkang Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ziheng Xu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Tianze Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Runmeng Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruiyang Zhang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuhao Mu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zheng Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Gao H, Wang L, Lyu Y, Jin H, Lin Z, Kang Y, Li Z, Zhang X, Jiang Y, Zhang G, Tao Z, Zhang X, Yang B, Bai X, Ma X, Liu S, Jiang J. The P2X7R/NLRP3 inflammasome axis suppresses enthesis regeneration through inflammatory and metabolic macrophage-stem cell cross-talk. SCIENCE ADVANCES 2025; 11:eadr4894. [PMID: 40279432 PMCID: PMC12024643 DOI: 10.1126/sciadv.adr4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
The regeneration of the enthesis remains a formidable challenge in regenerative medicine. However, key regulators underlying unsatisfactory regeneration remain poorly understood. This study reveals that the purinergic receptor P2X7 (P2X7R)/Nod-like receptor family protein 3 (NLRP3) inflammasome axis suppresses enthesis regeneration by amplifying IL-1β-mediated inflammatory cross-talk and suppressing docosatrienoic acid (DTA) metabolic cross-talk. NLRP3 inflammasomes were activated in macrophages following enthesis injury, thereby impairing the histological and functional recovery of the injured enthesis. Single-cell RNA sequencing (scRNA-seq) indicated that Nlrp3 knockout attenuated pathological inflammation and ameliorated the detrimental effects of IL-1β signaling cross-talk. Furthermore, NLRP3 inflammasomes suppressed the secretion of anti-inflammatory cytokines (IL-10 and IL-13) and DTA. The NLRP3 inflammasome-mediated secretome reduced differentiation and migration of stem cells. Neutralizing IL-1β or replenishing docosatrienoic acid accelerated enthesis regeneration. Moreover, conditional knockout of P2rx7 in myeloid cells attenuated NLRP3 inflammasome activation and facilitated enthesis regeneration. This study demonstrates that the P2X7R/NLRP3 inflammasome axis represents a promising therapeutic target for enthesis repair.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Liren Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Yangbao Lyu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haocheng Jin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiqi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuhao Kang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyun Li
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xueying Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuhan Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guoyang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zaijin Tao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaofeng Zhang
- Department of Orthopedic Surgery, Jinshan Branch of Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201500, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyu Bai
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Ma
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shen Liu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jia Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
4
|
Xu D, Liu Q, Wang J, Yin E, Zhou B, Li X, Shi Y. Muscle-Derived Mitochondria as a Novel Therapy for Muscle Degeneration After Rotator Cuff Tears. J Bone Joint Surg Am 2025:00004623-990000000-01436. [PMID: 40279441 DOI: 10.2106/jbjs.24.01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
BACKGROUND Rotator cuff tears (RCTs) commonly lead to muscle atrophy, fatty infiltration, and fibrosis, resulting in pain, weakness, and impaired shoulder mobility. These pathological changes are often irreversible and pose substantial treatment challenges. The aim of this study was to evaluate the therapeutic potential of muscle-derived mitochondria (Mito) in mitigating muscle degeneration and fibrosis following RCTs. METHODS Sprague Dawley rats were assigned to 3 groups: sham surgery, RCTs treated with Mito, or RCTs treated with phosphate-buffered saline solution (PBS). Following RCTs, in vivo Mito or PBS treatments were administered to the supraspinatus muscles (SSPs) of the rats immediately and then biweekly for 12 weeks. Data were collected on muscle morphology, fibrosis, fatty infiltration, oxidative stress, mitochondrial function, macrophage phenotypes, and serum inflammatory cytokines. In vitro experiments included mitochondria tracking in bone marrow-derived macrophages (BMDMs), characterization of macrophage polarization, and inflammatory cytokine profiling. RESULTS Isolated mitochondria preserved their morphology and function. Mito treatment improved muscle wet weight (p < 0.0001) and fiber cross-sectional area (p < 0.0001) while reducing fibrosis (p < 0.0001) and fatty infiltration (p < 0.0001). It upregulated mitochondrial markers cytochrome c oxidase (COX IV) and translocase of outer mitochondrial membrane 20 (TOMM20) (p < 0.0001) and enhanced antioxidative activity, as shown by increased superoxide dismutase (SOD) activity (p < 0.0001), elevated glutathione peroxidase (GSH-PX) levels (p = 0.038), and decreased malondialdehyde (MDA) levels (p = 0.0002). Mitochondrial density and morphology were restored in SSPs after Mito treatment. Additionally, Mito treatment induced an anti-inflammatory macrophage phenotype and reduced pro-inflammatory cytokines in vivo and in vitro. CONCLUSIONS Mito treatment mitigated muscle degeneration, improved mitochondrial function, and fostered an anti-inflammatory environment through macrophage modulation, demonstrating its potential as a cell-free therapeutic strategy for RCT-related muscle pathologies. CLINICAL RELEVANCE Although this is a preclinical study, its approach offers a novel avenue for improving RCT treatment outcomes. However, further validation in large animal models is needed to address the translational applicability of these findings, given the inherent regenerative capacity of rodent muscles.
Collapse
Affiliation(s)
- Ding Xu
- Department of Orthopedic Surgery, Ningbo No.6 Hospital, Ningbo, People's Republic of China
| | - Qing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jingzeng Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Enzhi Yin
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Biaohuan Zhou
- Department of Anorectal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China
| | - Xiao Li
- Priority Medical Department, General Hospital of Central Theater Command, Wuhan, People's Republic of China
| | - Yulong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Shi Y, Qin J, Yin E, Xu J, Chen Y, Tie K, Chen L. Mitochondria Isolated From Bone Mesenchymal Stem Cells Restrain Muscle Disuse Atrophy and Fatty Infiltration After Rotator Cuff Tears. Am J Sports Med 2025; 53:1171-1183. [PMID: 40088076 DOI: 10.1177/03635465251323001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
BACKGROUND Rotator cuff tears (RCTs) commonly lead to muscle atrophy, fibrosis, and fatty infiltration, complicating treatment. PURPOSE To investigate the use of mitochondria isolated from bone mesenchymal stem cells (BMSC-Mito) for mitigating complications after RCT, focusing on muscle protection. STUDY DESIGN Controlled laboratory study. METHODS RCTs were induced by transecting the tendons of the supraspinatus and infraspinatus in Sprague-Dawley rats. In vivo, 90 rats were randomized into 3 groups: sham (no intervention), RCTs treated with BMSC-Mito, and RCTs treated with phosphate-buffered saline. After 6 weeks of intramuscular injections of BMSC-Mito or phosphate-buffered saline, supraspinatus muscles were harvested for analysis. Evaluations included wet muscle weight, muscle fiber cross-sectional area, fibrosis, fatty infiltration, slow-fast myofiber types and muscle biomechanics, capillary density, mitochondria respiratory chain complex activity, adenosine triphosphate (ATP) concentration, oxidative stress, and mitochondrial ultrastructure. In vitro experiments utilized primary rat skeletal muscle cells pretreated with rhodamine 6G to induce mitochondrial dysfunction, assessing the effects of BMSC-Mito on cell viability, mitochondrial membrane potential, and oxidative stress levels. RESULTS BMSC-Mito can be effectively transplanted into muscles and integrated into the local mitochondrial network. After RCT, the supraspinatus showed significant mass loss, reduced fiber cross-sectional area, fatty infiltration, and a shift from slow to fast myofiber types, which negatively affected muscle biomechanics. These changes were reversed by BMSC-Mito. BMSC-Mito also preserved vascularity (CD31 and α-SMA) impaired by RCT. Additionally, BMSC-Mito notably improved disuse-induced mitochondrial changes, leading to increased mitochondrial number and COX IV expression; furthermore, BMSC-Mito protected mitochondria morphology and enhanced cytosolic superoxide dismutase activity. This treatment also improved mitochondria respiratory chain complex activity and ATP concentration, reducing oxidative stress. In vitro, BMSC-Mito treatment effectively maintained the mitochondrial membrane potential of skeletal muscle cells, improved cell viability, and restored its mitochondrial function and ATP levels. CONCLUSION These findings suggest that BMSC-Mito might play a role in preventing muscle atrophy and fatty infiltration after RCT through the protection of mitochondrial function and the promotion of angiogenesis. CLINICAL RELEVANCE BMSC-Mito present a promising therapeutic approach for addressing rotator cuff muscle degeneration.
Collapse
Affiliation(s)
- Yulong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Qin
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Enzhi Yin
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Kai Tie
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Gao X, Chen Y, Wang J, Xu J, Wan H, Li X, Shi Y. Mitochondria-Rich Extracellular Vesicles From Bone Marrow Stem Cells Mitigate Muscle Degeneration in Rotator Cuff Tears in a Rat Model Through Macrophage M2 Phenotype Conversion. Arthroscopy 2025:S0749-8063(25)00229-4. [PMID: 40147598 DOI: 10.1016/j.arthro.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE To investigate the protective effects of extracellular vesicles derived from bone marrow stem cells (BMSC-EVs) on muscle degeneration in a rat model of rotator cuff tendon and suprascapular nerve (SSN) transection (termed the RCT-SSN model), focusing on mitochondrial transfer. METHODS The EVs were identified and characterized. The RCT-SSN model was established by transecting the supraspinatus, infraspinatus tendons, and suprascapular nerve. Ninety-six rats were divided into 4 groups (n = 24 each): sham surgery, RCT-SSN treated with BMSC-EVs, RCT-SSN treated with EVs from rhodamine 6G-pretreated BMSCs (Rho-EVs), or phosphate-buffered saline. Intramuscular injections were administered every 2 weeks. After 12 weeks, supraspinatus muscles were analyzed for atrophy, fibrosis, oxidative stress, macrophage phenotypes, serum cytokines, and mitochondrial characteristics. In vitro experiments included EVs tracking in macrophages, macrophage phenotype characterization, and inflammatory cytokine profiling. RESULTS BMSC-EVs and Rho-EVs displayed similar morphology, but only BMSC-EVs contained functional mitochondria. BMSC-EVs significantly reduced muscle weight loss (0.047 ± 0.010% vs 0.145 ± 0.013%, P < .001), increased muscle fiber cross-sectional area (2037 ± 231.9 μm2 vs 527.9 ± 92.01 μm2, P < .001), and decreased fibrosis (12.09 ± 3.31% vs 25.69 ± 4.84%, P < .001) compared with phosphate-buffered saline. BMSC-EVs enhanced superoxide dismutase activity (93.3 ± 11.8 U/mg protein vs 53.4 ± 8.0 U/mg protein, P < .001), improved mitochondrial function, density and structure, and induced an anti-inflammatory macrophage shift, suppressing proinflammatory cytokines in vitro and in vivo. Rho-EVs showed no such effects. CONCLUSIONS This study showed that transecting the supraspinatus, infraspinatus tendons, and suprascapular nerve in a rat model induced muscle degeneration and fibrosis. BMSC-EVs, but not Rho-EVs, mitigated these effects by promoting an anti-inflammatory macrophage phenotype and protecting mitochondrial function through mitochondrial transfer. CLINICAL RELEVANCE Mitochondrial transfer via BMSC-EVs may offer a therapeutic strategy to prevent muscle degeneration in patients with rotator cuff tear.
Collapse
Affiliation(s)
- Xing Gao
- Animal Experimental Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Jingzeng Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hu Wan
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Li
- Priority Medical Department, General Hospital of Central Theater command, Wuhan, China
| | - Yulong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhang W, Zhang Y, Hao Z, Yao P, Bai J, Chen H, Wu X, Zhong Y, Xue D. Synthetic nanoparticles functionalized with cell membrane-mimicking, bone-targeting, and ROS-controlled release agents for osteoporosis treatment. J Control Release 2025; 378:306-319. [PMID: 39694070 DOI: 10.1016/j.jconrel.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Postmenopausal osteoporosis is a common degenerative disease, with suboptimal clinical outcomes. The targets of current therapeutic agents are both nonspecific and diverse. We synthesized a novel nanoparticle (NP), ALN@BMSCM@PLGA-TK-PEG-SS31. After intravenous injection, the NP evaded immune phagocytosis, targeted bone tissue, and efficiently downregulated bone reactive oxygen species (ROS) generation. The core PLGA-TK-PEG-SS31 NP was ∼100 nm in diameter. The TK chemical bond breaks on exposure to ROS, releasing the novel mitochondrion-targeting peptide SS31. Outer bone marrow mesenchymal stem cell membranes (BMSCMs) were used to coat the NP with surface proteins to ensure membrane functionality. The circulation time was prolonged and immune phagocytosis was evaded. Embedding the DSPE-PEG-ALN lipid within the cell membrane enhanced the bone-targeting ability of the NP. Our results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 exerted dual effects on bone tissue in vitro, significantly inhibiting RANKL-induced osteoclastogenesis in the presence of H2O2 and promoting osteogenic differentiation in BMSCs. In a mouse model of ovariectomy-induced osteoporosis, ALN@BMSCM@PLGA-TK-PEG-SS31 significantly ameliorated oxidative stress and increased bone mass with no notable systemic side effects. These results suggest that ALN@BMSCM@PLGA-TK-PEG-SS31 is a promising treatment for osteoporosis.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Ye Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhengan Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Pengjie Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yuliang Zhong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China.
| |
Collapse
|
8
|
Zhang X, Li M, Mao X, Yao Z, Zhu W, Yuan Z, Gao X, Pan S, Zhang Y, Zhao J, Mao H. Small Intestinal Submucosa Hydrogel Loaded With Gastrodin for the Repair of Achilles Tendinopathy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401886. [PMID: 39185812 DOI: 10.1002/smll.202401886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Achilles tendinopathy (AT) is an injury caused by overuse of the Achilles tendon or sudden force on the Achilles tendon, with a considerable inflammatory infiltrate. As Achilles tendinopathy progresses, inflammation and inflammatory factors affect the remodeling of the extracellular matrix (ECM) of the tendon. Gastrodin(Gas), the main active ingredient of Astrodia has anti-inflammatory, antioxidant, and anti-apoptotic properties. The small intestinal submucosa (SIS) is a naturally decellularized extracellular matrix(dECM)material and has a high content of growth factors as well as good biocompatibility. However, the reparative effects of SIS and Gas on Achilles tendinopathy and their underlying mechanisms remain unknown. Here, it is found that SIS hydrogel loaded with gastrodin restored the mechanical strength of the Achilles tendon, facilitated ECM remodeling, and restored ordered collagen arrangement by promoting the translocation of protein synthesis. It also decreases the expression of inflammatory factors and reduces the infiltration of inflammatory cells by inhibiting the NF-κB signaling pathway. It is believed that through further research, Gas + SIS may be used in the future for the treatment of Achilles tendinopathy and other Achilles tendon injury disorders.
Collapse
Affiliation(s)
- Xiqian Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Mei Li
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Xufeng Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Zheyu Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Weilai Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Zheyang Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Xiang Gao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Senghao Pan
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yijun Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| |
Collapse
|
9
|
Mo Y, Deng S, Ai Y, Li W. SS-31 inhibits the inflammatory response by increasing ATG5 and promoting autophagy in lipopolysaccharide-stimulated HepG2 cells. Biochem Biophys Res Commun 2024; 710:149887. [PMID: 38581954 DOI: 10.1016/j.bbrc.2024.149887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
SS-31 is a mitochondria-targeting short peptide. Recent studies have indicated its hepatoprotective effects. In our study, we investigated the impact of SS-31 on LPS-induced autophagy in HepG2 cells. The results obtained from a dual-fluorescence autophagy detection system revealed that SS-31 promotes the formation of autolysosomes and autophagosomes, thereby facilitating autophagic flux to a certain degree. Additionally, both ELISA and qPCR analyses provided further evidence that SS-31 safeguards HepG2 cells against inflammatory responses triggered by LPS through ATG5-dependent autophagy. In summary, our study demonstrates that SS-31 inhibits LPS-stimulated inflammation in HepG2 cells by upregulating ATG5-dependent autophagy.
Collapse
Affiliation(s)
- Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Plastic Surgery, Yaoyanzhi Aesthetic Hospital, Haikou, Hainan, 570203, China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Emergency Department of Internal Medicine, Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
10
|
Eliasberg CD, Trinh PMP, Rodeo SA. Translational Research on Orthobiologics in the Treatment of Rotator Cuff Disease: From the Laboratory to the Operating Room. Sports Med Arthrosc Rev 2024; 32:33-37. [PMID: 38695501 DOI: 10.1097/jsa.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Rotator cuff disease is one of the most common human tendinopathies and can lead to significant shoulder dysfunction. Despite efforts to improve symptoms in patients with rotator cuff tears and healing rates after rotator cuff repair, high rates of failed healing and persistent shoulder morbidity exist. Increasing interest has been placed on the utilization of orthobiologics-scaffolds, cell-based augmentation, platelet right plasma (platelet-rich plasma), and small molecule-based strategies-in the management of rotator cuff disease and the augmentation of rotator cuff repairs. This is a complex topic that involves novel treatment strategies, including patches/scaffolds, small molecule-based, cellular-based, and tissue-derived augmentation techniques. Ultimately, translational research, with a particular focus on preclinical models, has allowed us to gain some insights into the utility of orthobiologics in the treatment of rotator cuff disease and will continue to be critical to our further understanding of the underlying cellular mechanisms moving forward.
Collapse
Affiliation(s)
- Claire D Eliasberg
- HSS Sports Medicine Institute, Hospital for Special Surgery
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
| | - Paula M P Trinh
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
- Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- HSS Sports Medicine Institute, Hospital for Special Surgery
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
| |
Collapse
|
11
|
Shahid H, Morya VK, Oh JU, Kim JH, Noh KC. Hypoxia-Inducible Factor and Oxidative Stress in Tendon Degeneration: A Molecular Perspective. Antioxidants (Basel) 2024; 13:86. [PMID: 38247510 PMCID: PMC10812560 DOI: 10.3390/antiox13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Tendinopathy is a debilitating condition marked by degenerative changes in the tendons. Its complex pathophysiology involves intrinsic, extrinsic, and physiological factors. While its intrinsic and extrinsic factors have been extensively studied, the role of physiological factors, such as hypoxia and oxidative stress, remains largely unexplored. This review article delves into the contribution of hypoxia-associated genes and oxidative-stress-related factors to tendon degeneration, offering insights into potential therapeutic strategies. The unique aspect of this study lies in its pathway-based evidence, which sheds light on how these factors can be targeted to enhance overall tendon health.
Collapse
Affiliation(s)
- Hamzah Shahid
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
- School of Medicine, Hallym University, Chuncheon City 24252, Gangwon-do, Republic of Korea
| | - Vivek Kumar Morya
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Ji-Ung Oh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Jae-Hyung Kim
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Kyu-Cheol Noh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| |
Collapse
|
12
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|