1
|
Wang K, Liu X, Jiang X, Chen S, Wang H, Wang Z, Wang Q, Li Z. Human dental pulp stem cells for spinal cord injury. Stem Cell Res Ther 2025; 16:123. [PMID: 40055766 PMCID: PMC11887269 DOI: 10.1186/s13287-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
Spinal cord injury (SCI) is a serious neurological disorder that causes loss of mobility, pain, and autonomic dysfunction, resulting in altered sensation and devastating loss of function. Current treatments for SCI mainly focus on surgery and drug therapy to promote neurological recovery. However, there are virtually no effective remedies for irreversible nerve damage that result in a victim's loss of motor function and sensory changes that occur after an injury. With the continuous development of medical technology, stem-cell-based regenerative medicine provides researchers with new treatment ideas. The effectiveness of mesenchymal stem cells and their derivatives from different sources in treating SCI varies. Recent studies have highlighted that dental pulp stem cells (DPSCs) may contribute to anti-inflammatory regulation, anti-apoptotic regulation, and axonal regeneration in the treatment of SCI patients. In addition, the combination of new biomaterials and dental pulp stem cells is promising in the treatment of SCI. This article reviews the role of DPSCs in SCI treatment in recent years, discusses the advantages of DPSCs, explores potential development directions, and looks forward to providing new insights for future research in this critical field.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xukai Jiang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhenbo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Qiwen Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China.
| |
Collapse
|
2
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Emamhadi M, Haghani Dogahe M, Gohritz A. Nerve transfers in tetraplegia: a review and practical guide. J Neurosurg Sci 2021; 65:431-441. [PMID: 33870671 DOI: 10.23736/s0390-5616.21.05312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) may lead to tetraplegia. Several nerve transfers have been successfully used for the restoration of the upper limb in tetraplegia. Reconstruction of an upper limb is individualized based on the functional level. In this study, the authors reviewed nerve transfers based on the injury level for the restoration of upper limb function in tetraplegia. EVIDENCE ACQUISITION We performed this study to review nerve transfers in tetraplegia by searching MEDLINE and EMBASE databases to identify relevant articles published through December 2020. We selected studies that reported cases in tetraplegia and extracted information on demographic data, clinical characteristics, operative details, and strength outcomes based on each injury level after surgery. EVIDENCE SYNTHESIS Total of 29 journal articles reporting on 275 nerve transfers in 172 upper limbs of 121 patients were included in the review. The mean time between SCI and nerve transfer surgery was 21.37 months (range: 4-156 months), and the follow-up time was 21.34 months (range: 3-38 months). The best outcomes were achieved for the restoration of wrist/finger extension and elbow extension. CONCLUSIONS Nerve transfer can provide a new function in tetraplegic patients' upper limbs to improve daily living activities. The type of surgical procedure should be performed based on the functional level of SCI and the individual's needs. Functional recovery occurs more in extensor muscles than flexors. Nerve transfer is a promising option in the reconstruction of upper limb function in tetraplegia.
Collapse
Affiliation(s)
- Mohammadreza Emamhadi
- Brachial Plexus and Peripheral Nerve Injury Center, Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran -
| | - Mohammad Haghani Dogahe
- Brachial Plexus and Peripheral Nerve Injury Center, Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran
| | - Andreas Gohritz
- Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|