1
|
Medo A, Ohte N, Doi H, Kamdee K, Koba K, Arai N, Mitsunaga Y, Kume M, Kojima D, Nose T, Yokoyama A, Viputhanumas T, Mitamura H. Trophic niche partitioning and intraspecific variation in food resource use in the genus Pangasianodon in a reservoir revealed by stable isotope analysis of multiple tissues. JOURNAL OF FISH BIOLOGY 2024; 105:814-824. [PMID: 38880940 DOI: 10.1111/jfb.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanism by which non-native fish species integrate into native communities is crucial for evaluating the possibility of their establishment success. The genus Pangasianodon, comprising Pangasianodon gigas and Pangasianodon hypophthalmus, has been introduced into reservoirs, which are non-native habitats, for fishery stock enhancement. P. gigas and P. hypophthalmus often successfully establish and co-occur in several Thai reservoirs, but there is little information on differences in food resource use between the two species. To investigate the trophic niche width of P. gigas and P. hypophthalmus in a Thai reservoir, we conducted stable carbon and nitrogen ratio (δ13C and δ15N) analyses. We examined the degree of individual specialization in both species using the δ13C and δ15N values of muscle and liver tissues, which provides long- and short-term diet information. The isotopic niches did not overlap between P. gigas and P. hypophthalmus. The δ15N value of P. gigas was significantly higher than that of P. hypophthalmus, whereas the δ13C value did not significantly differ between the two species. The isotopic niche sizes were larger in P. hypophthalmus than in P. gigas. Individual specialization was observed in P. hypophthalmus but not in P. gigas, indicating that intraspecific variation in food resource use was larger in P. hypophthalmus compared to P. gigas. These findings suggest that trophic niche partitioning was one of the factors facilitating the establishment success of P. gigas and P. hypophthalmus in a reservoir, but the establishment process may differ between the two species.
Collapse
Affiliation(s)
- Ayano Medo
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Nobuaki Arai
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | | | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Daichi Kojima
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Takashi Nose
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Ayako Yokoyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Thavee Viputhanumas
- Inland Aquaculture Research and Development Division, Department of Fisheries, Bangkok, Thailand
| | - Hiromichi Mitamura
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
He F, Svenning JC, Chen X, Tockner K, Kuemmerle T, le Roux E, Moleón M, Gessner J, Jähnig SC. Freshwater megafauna shape ecosystems and facilitate restoration. Biol Rev Camb Philos Soc 2024; 99:1141-1163. [PMID: 38411930 DOI: 10.1111/brv.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Freshwater megafauna, such as sturgeons, giant catfishes, river dolphins, hippopotami, crocodylians, large turtles, and giant salamanders, have experienced severe population declines and range contractions worldwide. Although there is an increasing number of studies investigating the causes of megafauna losses in fresh waters, little attention has been paid to synthesising the impacts of megafauna on the abiotic environment and other organisms in freshwater ecosystems, and hence the consequences of losing these species. This limited understanding may impede the development of policies and actions for their conservation and restoration. In this review, we synthesise how megafauna shape ecological processes in freshwater ecosystems and discuss their potential for enhancing ecosystem restoration. Through activities such as movement, burrowing, and dam and nest building, megafauna have a profound influence on the extent of water bodies, flow dynamics, and the physical structure of shorelines and substrata, increasing habitat heterogeneity. They enhance nutrient cycling within fresh waters, and cross-ecosystem flows of material, through foraging and reproduction activities. Freshwater megafauna are highly connected to other freshwater organisms via direct consumption of species at different trophic levels, indirect trophic cascades, and through their influence on habitat structure. The literature documenting the ecological impacts of freshwater megafauna is not evenly distributed among species, regions, and types of ecological impacts, with a lack of quantitative evidence for large fish, crocodylians, and turtles in the Global South and their impacts on nutrient flows and food-web structure. In addition, population decline, range contraction, and the loss of large individuals have reduced the extent and magnitude of megafaunal impacts in freshwater ecosystems, rendering a posteriori evaluation more difficult. We propose that reinstating freshwater megafauna populations holds the potential for restoring key ecological processes such as disturbances, trophic cascades, and species dispersal, which will, in turn, promote overall biodiversity and enhance nature's contributions to people. Challenges for restoration actions include the shifting baseline syndrome, potential human-megafauna competition for habitats and resources, damage to property, and risk to human life. The current lack of historical baselines for natural distributions and population sizes of freshwater megafauna, their life history, trophic interactions with other freshwater species, and interactions with humans necessitates further investigation. Addressing these knowledge gaps will improve our understanding of the ecological roles of freshwater megafauna and support their full potential for facilitating the development of effective conservation and restoration strategies to achieve the coexistence of humans and megafauna.
Collapse
Affiliation(s)
- Fengzhi He
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun, 130102, China
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Xing Chen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Faculty for Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main, 60438, Germany
| | - Tobias Kuemmerle
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Marcos Moleón
- Department of Zoology, University of Granada, Avenida de Fuente Nueva S/N, Granada, 18071, Spain
| | - Jörn Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
3
|
Medo A, Ohte N, Kajitani H, Nose T, Manabe Y, Sugawara T, Onishi Y, Goto AS, Koba K, Arai N, Mitsunaga Y, Kume M, Nishizawa H, Kojima D, Yokoyama A, Yamanaka T, Viputhanumas T, Mitamura H. Striped catfish (Pangasianodon hypophthalmus) exploit food sources across anaerobic decomposition- and primary photosynthetic production-based food chains. Sci Rep 2023; 13:13992. [PMID: 37634023 PMCID: PMC10460403 DOI: 10.1038/s41598-023-41209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary information from aquatic organisms is instrumental in predicting biological interactions and understanding ecosystem functionality. In freshwater habitats, generalist fish species can access a diverse array of food sources from multiple food chains. These may include primary photosynthetic production and detritus derived from both oxic and anoxic decomposition. However, the exploitation of anoxic decomposition products by fish remains insufficiently explored. This study examines feeding habits of striped catfish (Pangasianodon hypophthalmus) at both adult and juvenile stages within a tropical reservoir, using stable carbon, nitrogen, and sulfur isotope ratios (δ13C, δ15N, and δ34S, respectively) and fatty acid (FA) analyses. The adult catfish exhibited higher δ15N values compared to primary consumers that feed on primary photosynthetic producers, which suggests ingestion of food sources originating from primary photosynthetic production-based food chains. On the other hand, juvenile catfish demonstrated lower δ15N values than primary consumers, correlating with low δ34S value and large proportions of bacterial FA but contained small proportions of polyunsaturated FA. This implies that juveniles utilize food sources from both anoxic decomposition and primary photosynthetic production-based food chains. Our results indicate that food chains based on anoxic decomposition can indeed contribute to the dietary sources of tropical fish species.
Collapse
Affiliation(s)
- Ayano Medo
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroki Kajitani
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takashi Nose
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Sugawara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuji Onishi
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
- Research Institute for Humanity and Nature, 457-4 Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8047, Japan
| | - Akiko S Goto
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Nobuaki Arai
- Field Science Education and Research Center, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasushi Mitsunaga
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideaki Nishizawa
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daichi Kojima
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ayako Yokoyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiro Yamanaka
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Thavee Viputhanumas
- Inland Aquaculture Research and Development Division, Department of Fisheries, 50 Phahonyothin Rd., Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Hiromichi Mitamura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Field Science Education and Research Center, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|