1
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
2
|
Mazza R, Imbrogno S, Tota B. The interplay between chromogranin A-derived peptides and cardiac natriuretic peptides in cardioprotection against catecholamine-evoked stress. ACTA ACUST UNITED AC 2010; 165:86-94. [PMID: 20594992 DOI: 10.1016/j.regpep.2010.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
Chromogranin A (CgA) is the major soluble protein co-stored and co-released with catecholamines (CAs) from secretory vesicles in the adrenal medulla chromaffin cells. Present in the diffuse neuroendocrine system, it has also been detected in rat and human cardiac secretory granules where it co-stores with natriuretic peptide hormones (NPs). Mounting evidence shows that CgA is a marker of cardiovascular dysfunctions (essential hypertension, hypertrophic and dilatative cardiomyopathy, heart failure) and precursor of the cardioactive peptides vasostatin-1 (VS-1) and catestatin (Cts). This review focuses on recent knowledge regarding the myocardial, coronary and anti-adrenergic actions of VS-1. In particular, the negative inotropism, lusitropism and coronary dilation effects of rat CgA1-64 (rCgA) and human recombinant STACgA1-78 (hrSTACgA1-78) are summarized with attention on their counteracting isoproterenol- and endothelin-1-induced positive inotropism, as well as ET-1-dependent coronary constriction. The interactions between vasostatins (VSs), NPs and CA receptors are proposed as a paradigm of the heart capacity to organize complex connection-integration processes for maintaining homeostasis under intense cardio-excitatory stimuli (myocardial stress).
Collapse
Affiliation(s)
- Rosa Mazza
- Dept of Cell Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
3
|
Toop T, Donald JA. Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. J Comp Physiol B 2004; 174:189-204. [PMID: 14735307 DOI: 10.1007/s00360-003-0408-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.
Collapse
Affiliation(s)
- T Toop
- School of Biological and Chemical Sciences, Deakin University, 3217, Geelong, Victoria, Australia.
| | | |
Collapse
|
4
|
Donald JA, Meier SK, Riddell S. Toad atrial natriuretic peptide: cDNA cloning and functional analysis in isolated perfused kidneys. Physiol Biochem Zool 2002; 75:617-26. [PMID: 12601618 DOI: 10.1086/344740] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2002] [Indexed: 11/03/2022]
Abstract
A complementary DNA (cDNA) encoding Bufo marinus (toad) preproatrial natriuretic peptide (preproANP) was isolated by reverse-transcription polymerase chain reaction. Sequence analysis of toad preproANP cDNA revealed an open reading frame of 150 amino acid residues, which shared 72% and 66% identity with Rana catesbeiana and Xenopus laevis preproANP, respectively. The deduced amino acid sequence of toad ANP that corresponded to ANP 1-24 of R. catesbeiana and Rana ridibunda was identical, but it differed by four residues from that of X. laevis. ANP mRNA transcripts were also shown to be expressed in the toad kidney. Subsequently, the effect of frog ANP (1-24) on renal function in toad was examined using a perfused kidney preparation. The arterial infusion of frog ANP caused a dose-dependent decrease in the arterial perfusion pressure that was associated with an increase in the glomerular filtration rate (GFR) and a renal natriuresis and diuresis. The renal natriuresis and diuresis resulted predominantly from an increased GFR rather than from direct tubular effects. This study demonstrates that ANP can regulate renal function, which suggests it may be involved in overall fluid volume regulation.
Collapse
Affiliation(s)
- John A Donald
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria 3217, Australia.
| | | | | |
Collapse
|
5
|
Takei Y, Inoue K, Ando K, Ihara T, Katafuchi T, Kashiwagi M, Hirose S. Enhanced expression and release of C-type natriuretic peptide in freshwater eels. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1727-35. [PMID: 11353677 DOI: 10.1152/ajpregu.2001.280.6.r1727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-type natriuretic peptide (CNP) is recognized as a paracrine factor acting locally in the brain and periphery. To assess the role of CNP in teleost fish, a cDNA encoding a CNP precursor was initially cloned from the eel brain. CNP message subsequently detected by ribonuclease protection assay, using the cDNA as probe, was most abundant in the brain followed by liver, gut, gills, and heart. Expression was generally higher in freshwater (FW) than in seawater (SW) eels, but not in the brain. Plasma CNP concentration measured by a newly developed homologous radioimmunoassay for eel CNP was higher in FW than in SW eels. The CNP concentration was also higher in the heart of FW eels but not in the brain. These results show that CNP is abundantly synthesized in peripheral tissues of FW eels and secreted constitutively into the circulation. Therefore, CNP is a circulating hormone as well as a paracrine factor in eels. Together with our previous demonstration that CNP-specific receptor expression is enhanced in FW eels, it appears that CNP is a hormone important for FW adaptation. Because atrial NP (ANP) promotes SW adaptation in eels, CNP and ANP, despite high sequence identity, appear to have opposite effects on environmental adaptation of the euryhaline fish.
Collapse
Affiliation(s)
- Y Takei
- Ocean Research Institute, the University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of natriuretic peptides; in the elasmobranchs, hypervolemia is the predominant physiological stimulus for secretion. Natriuretic peptides may be seawater-adapting hormones with appropriate target organs including the gills, rectal gland, kidney, and intestine, with each regulated via, predominantly, either A- or B-type (or C- or D-type?) natriuretic peptide receptors. Natriuretic peptides act both directly on ion-transporting cells of osmoregulatory tissues, and indirectly through increased vascular flow to osmoregulatory tissues, through inhibition of drinking, and through effects on other endocrine systems.
Collapse
Affiliation(s)
- C A Loretz
- Department of Biological Sciences, Box 601300, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA.
| | | |
Collapse
|
7
|
Takei Y. Structural and functional evolution of the natriuretic peptide system in vertebrates. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:1-66. [PMID: 10494624 DOI: 10.1016/s0074-7696(08)62394-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The natriuretic peptide (NP) system consists of three types of hormones [atrial NP (ANP), brain or B-type NP (BNP), and C-type NP (CNP)] and three types of receptors [NP receptor (R)-A, NPR-B, and NPR-C]. ANP and BNP are circulating hormones secreted from the heart, whereas CNP is basically a neuropeptide. NPR-A and NPR-B are membrane-bound guanylyl cyclases, whereas NPR-C is assumed to function as a clearance-type receptor. ANP, BNP, and CNP occur commonly in all tetrapods, but ventricular NP replaces BNP in teleost fish. In elasmobranchs, only CNP is found, even in the heart, suggesting that CNP is an ancestral form. A new guanylyl cyclase-uncoupled receptor named NPR-D has been identified in the eel in addition to NPR-A, -B, and -C. The NP system plays pivotal roles in cardiovascular and body fluid homeostasis. ANP is secreted in response to an increase in blood volume and acts on various organs to decrease both water and Na+, resulting in restoration of blood volume. In the eel, however, ANP is secreted in response to an increase in plasma osmolality and decreases Na+ specifically, thereby promoting seawater adaptation. Therefore, it seems that the family of NPs were originally Na(+)-extruding hormones in fishes; however, they evolved to be volume-depleting hormones promoting the excretion of both Na+ and water in tetrapods in which both are always regulated in the same direction. Vertebrates expanded their habitats from fresh water to the sea or to land during evolution. The structure and function of osmoregulatory hormones have also undergone evolution during this ecological evolution. Thus, a comparative approach to the study of the NP family affords new insights into the essential function of this osmoregulatory hormone.
Collapse
Affiliation(s)
- Y Takei
- Laboratory of Physiology, University of Tokyo, Japan
| |
Collapse
|
8
|
Kashiwagi M, Miyamoto K, Takei Y, Hirose S. Cloning, properties and tissue distribution of natriuretic peptide receptor-A of euryhaline eel, Anguilla japonica. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:204-11. [PMID: 9914494 DOI: 10.1046/j.1432-1327.1999.00023.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the course of cloning and characterization of natriuretic peptide receptor-A (NPR-A) from the euryhaline fish eel, Anguilla japonica, we identified a splice variant with unique structural properties that affect ligand-inducible intrinsic guanylate cyclase activity. The variant, generated from a splice between a cryptic donor site and the normal acceptor site, lacked nine amino acid residues (VFTKTGYYK) in the kinase-like regulatory domain. This deletion of a very short segment resulted in the complete loss of the ligand inducibility of the cyclase activity. The nine-amino acid segment may therefore be useful as a target for studies aimed at clarifying the mechanism of activation of the guanylate cyclase domain. Characterization of the normal form of eel NPR-A also led to the following interesting findings. Although eel NPR-A had a domain structure very similar to that of mammalian counterparts, it lacked the third cysteine residue in the extracellular domain which is conserved among mammalian NPR-A molecules. The eel receptor bound both amidated and nonamidated eel atrial natriuretic peptide (eANP) with high affinity but, when assayed for ligand-inducible cGMP generation, it responded efficiently only to physiological concentrations of the amidated ligand, suggesting that the biologically active form is the amidated eANP, and the nonamidated form acts as a partial antagonist; similarly, nonhomologous rat ligands behaved like antagonists toward the eel receptor in the concentration range 0.1-10 nm. The receptor message was found to be relatively abundant in the osmoregulatory organs such as the gill, kidney, intestine and urinary bladder.
Collapse
Affiliation(s)
- M Kashiwagi
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|