1
|
Becerra GP, Rojas-Rodríguez F, Ramírez D, Loaiza AE, Tobar-Tosse F, Mejía SM, González J. Structural and functional computational analysis of nicotine analogs as potential neuroprotective compounds in Parkinson disease. Comput Biol Chem 2020; 86:107266. [PMID: 32388154 DOI: 10.1016/j.compbiolchem.2020.107266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
As the mechanism of interaction between nicotinic receptors with nicotine analogs is not yet fully understood, information at molecular level obtained from computational calculations is needed. In this sense, this work is a computational study of eight nicotine analogs, all with pyrrolidine ring modifications over a nicotine-based backbone optimized with B3LYP-D3/aug-cc-pVDZ. A molecular characterization was performed focusing on geometrical parameters such as pseudo-rotation angles, atomic charges, HOMO and LUMO orbitals, reactivity indexes and intermolecular interactions. Three analogs, A2 (3-(1,3-dimethyl-4,5-dihydro-1h-pirazole-5-yl) pyridine), A3 (3-(3-methyl-4,5-dihydro-1H-pyrazol-5-yl)-pyridine) and A8 (5-methyl-3-(pyridine-3-yl)-4,5-dihydroisoxazole), were filtered suggesting putative neuroprotective activity taking into account different reactivity values, such as their lowest hardness: 2.37 eV (A8), 2.43 eV (A2) and 2.56 eV (A3), compared to the highest hardness value found: 2.71 eV for A5 (3-((2S,4R)-4-(fluoromethyl)-1-methylpyrrolidine-2-il) pyridine), similar to the value of nicotine (2.70 eV). Additionally, molecular docking of all 8 nicotine analogs with the α 7 nicotinic acetylcholine receptor (α 7 nAChR) was performed. High values of interaction between the receptor and the three nicotine analogs were obtained: A3 (-7.1 kcal/mol), A2 (-6.9 kcal/mol) and A8 (-6.8 kcal/mol); whereas the affinity energy of nicotine was -6.4 kcal/mol. Leu116 and Trp145 are key residues in the binding site of α 7 nAChR interacting with nicotine analogs. Therefore, based upon these results, possible application of these nicotine analogs as neuroprotective compounds and potential implication at the design of novel Parkinson's treatments is evidenced.
Collapse
Affiliation(s)
- Gina Paola Becerra
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El Llano Subercaseaux 2801-Piso 5, 8900000, Santiago, Chile
| | - Alix E Loaiza
- Laboratorio de Síntesis Orgánica, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Sol M Mejía
- Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Janneth González
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
2
|
Roux I, Wu JS, McIntosh JM, Glowatzki E. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea. J Neurophysiol 2016; 116:479-92. [PMID: 27098031 DOI: 10.1152/jn.01038.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs.
Collapse
Affiliation(s)
- Isabelle Roux
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Jingjing Sherry Wu
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah; and Department of Biology, Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Elisabeth Glowatzki
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Moriyama H, Amano K, Itoh M, Matsumura G, Otsuka N. Morphometric aspects of the facial and skeletal muscles in fetuses. Int J Pediatr Otorhinolaryngol 2015; 79:998-1002. [PMID: 25920965 DOI: 10.1016/j.ijporl.2015.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES There are few research reports providing a comparison of the muscle fiber morphometry between human fetuses and adults. Data on fetal and adult muscle fibers would be valuable in understanding muscle development and a variety of muscle diseases. This study investigated human muscle fiber growth to clarify the difference between the facial muscles and other skeletal muscles. METHODS The materials were obtained from three male fetuses (6-month-old) and 11 Japanese male cadavers aged 43-86 years (average: 71.8). Human buccinator muscles (facial muscles), masseter and biceps brachii muscles (skeletal muscles) were resected. We counted the muscle fibers and measured their transverse area. We also calculated the number of muscle fibers per mm(2) (NMF) and the average transverse area of the muscle fibers (TAMFs). RESULTS The average of the NMF of the buccinator, masseter and biceps brachii muscles in fetuses had, respectively, 19, 37, and 22 times as many fibers as those in adults. The average fetus/adult ratios of the TAMF of the buccinator, masseter and biceps brachii muscles were 4.0%, 2.4%, 4.1%, respectively. CONCLUSIONS The average NMF for all kinds of muscles decreased after birth; however, the peak in life-span or decreases with the aging process tended to vary with the kind of muscles examined. The average TAMF for all kinds of muscles enlarged after birth. We considered that the enlargement of the TAMF was connected with the emergence of fetal movements and functional demands after birth.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Department of Anatomy, Showa University School of Medicine, 5-8, Hatanodai 1, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Kaori Amano
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, 1-1, Shinjuku 6, Shinjuku-ku, Tokyo 160-8402, Japan
| | - George Matsumura
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Naruhito Otsuka
- Department of Anatomy, Showa University School of Medicine, 5-8, Hatanodai 1, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
4
|
Nariyama M, Mori M, Shimazaki E, Ando H, Ohnuki Y, Abo T, Yamane A, Asada Y. Functions of miR-1 and miR-133a during the postnatal development of masseter and gastrocnemius muscles. Mol Cell Biochem 2015; 407:17-27. [PMID: 25981536 DOI: 10.1007/s11010-015-2450-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
The present study investigated the function of miR-1 and miR-133a during the postnatal development of mouse skeletal muscles. The amounts of miR-1 and miR-133a were measured in mouse masseter and gastrocnemius muscles between 1 and 12 weeks after birth with real-time polymerase chain reaction and those of HDACs, MEF2, MyoD family, MCK, SRF, and Cyclin D1 were measured at 2 and 12 weeks with Western blotting. In both the masseter and gastrocnemius muscles, the amount of miR-1 increased between 1 and 12 weeks, whereas the amount of HADC4 decreased between 2 and 12 weeks. In the masseter muscle, those of MEF2, MyoD, Myogenin, and MCK increased between 2 and 12 weeks, whereas, in the gastrocnemius muscle, only those of MRF4 and MCK increased. The extent of these changes in the masseter muscle was greater than that in the gastrocnemius muscle. The amounts of miR-133a, SRF, and Cyclin D1 did not change significantly in the masseter muscle between 1 and 12 weeks after birth. By contrast, in the gastrocnemius muscle, the amounts of miR-133a and Cyclin D1 increased, whereas that of SRF decreased. Our findings suggest that the regulatory pathway of miR-1 via HDAC4 and MEF2 plays a more prominent role during postnatal development in the masseter muscle than in the gastrocnemius muscle, whereas that of miR-133a via SRF plays a more prominent role in the gastrocnemius muscle than in the masseter muscle.
Collapse
Affiliation(s)
- Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sato I, Miwa Y, Hara S, Fukuyama Y, Sunohara M. Tenomodulin regulated the compartments of embryonic and early postnatal mouse masseter muscle. Ann Anat 2014; 196:410-5. [PMID: 25107480 DOI: 10.1016/j.aanat.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 07/06/2014] [Indexed: 11/17/2022]
Abstract
The masseter muscle (MM) is a complex tendinous laminar structure during development; however, the stage of the laminar structure formation is unknown. Tenomodulin (TeM) is a useful marker of tendons and has an anti-angiogenic cysteine-rich C-terminal domain. Therefore, we analyzed mRNA of TeM and angiogenesis markers (CD31 and vascular endothelial growth factor (VEGF)) and performed in situ hybridization for the TeM genes in MM from on embryonic day 12.5 (E12.5) to postnatal day 5 (P5). The TeM expression is at first detectable in the middle region of the mesenchymal connective tissue in the MM at E 12.5. The expression domains of the TeM during development typically include the middle region of the MM, particularly surrounding the vascular regions. The level of TeM mRNA in the MM increased from E12.5 to E17.5 and decreased after birth. In contrast, the levels of CD31 and VEGF mRNAs were almost constant from E12.5 to E18.5 and then low from birth onward. Therefore, the development of the laminar tendinous structure in the middle region between superficial and deeper regions of the MM first occurs during the process of tendon formation at embryonic day 12.5. In our study of MM development, the laminar structure regulating TeM also prevents vascular invasion during the formation of compartment of the MM. The tendon may relate to the components of muscle mass of MM.
Collapse
Affiliation(s)
- Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Setsuhiro Hara
- TMD Clinic, The Nippon Dental University Hospital, The Nippon Dental University, Tokyo, Japan.
| | - Yutaka Fukuyama
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Mori M, Nariyama M, Abo T, Hirai S, Ogawa T, Hamada Y, Yamane A, Asada Y. Role of Occlusion in Masseter Muscle Acetylcholine Receptor Clustering. J Dent Res 2013; 92:352-7. [DOI: 10.1177/0022034513476038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic acetylcholine receptor (nAChR) clustering is a key event in the synaptogenesis of the neuromuscular junction (NMJ) for the efficient transmission of neural signals from motor neurons to skeletal muscle. The microphthalmic mouse ( mi/mi) with a mutation in the mitf gene cannot perform occlusion, because its teeth do not erupt. The present study attempted to elucidate the contribution of occlusion to the clustering of nAChR in the NMJ of the masseter, with mi/mi as a model system. In mice at 1 week of age, no significant change in the fragmentation or volume of the nAChR cluster was observed in either the masseter or gastrocnemius between breast-fed +/+ and mi/mi. In mice at 4 and 12 weeks of age, after the occlusion emerged in the +/+, excessive fragmentation and volume decline in the nAChR cluster were observed in the masseter of mi/mi fed a powdered diet compared with +/+ fed a pellet or powdered diet, whereas, in the gastrocnemius, no such differences were observed between the 2 strains. These results indicate abnormal formation of the nAChR cluster in the NMJ of the masseter of mi/mi, suggesting that occlusion is essential for the normal progress of nAChR clustering in the NMJ of the masseter.
Collapse
Affiliation(s)
- M. Mori
- Departments of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - M. Nariyama
- Departments of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - T. Abo
- Oral and Maxillofacial Surgery, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - S. Hirai
- Fixed Prosthodontics, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - T. Ogawa
- Fixed Prosthodontics, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - Y. Hamada
- Oral and Maxillofacial Surgery, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - A. Yamane
- Biophysics, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - Y. Asada
- Departments of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| |
Collapse
|
7
|
Nariyama M, Kota Y, Kaneko S, Asada Y, Yamane A. Association between the lack of teeth and the expression of myosins in masticatory muscles of microphthalmic mouse. Cell Biochem Funct 2011; 30:82-8. [PMID: 22034127 DOI: 10.1002/cbf.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 11/11/2022]
Abstract
The purposes of the present study were to elucidate the influences of the deficiency of teeth on masticatory muscles, such as the masseter, temporalis and digastric muscles and compare the influence among masticatory muscles. We analysed the expressions of myosin heavy chain (MyHC) isoform messenger RNA (mRNA) and protein in these muscles in the microphthalmic (mi/mi) mouse, whose teeth cannot erupt because of a mutation in the mitf gene locus. The expression levels of MyHC mRNA and protein in the masseter, temporalis, digastric, tibialis anterior and gastrocnemius muscles of +/+ and mi/mi mice were analysed with real-time polymerase chain reaction and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The mi/mi masseter muscle at 8 weeks of age expressed 4.1-fold (p < 0.05) and 3.3-fold (p < 0.01) more MyHC neonatal mRNA and protein than that in the +/+, respectively; the expression level of MyHC neonatal protein was 19% of the total MyHC protein in the masseter muscle of mi/mi mice. In the digastric muscle, the expression levels of MyHC I mRNA and protein in the mi/mi mice were 4.7-fold (p < 0.05) and 5-fold (p < 0.01) higher than those in the +/+ mice. In the temporalis, tibialis anterior and gastrocnemius muscles, there was no significant difference in the expression levels of any MyHC isoform mRNA and protein between +/+ and mi/mi mice. These results indicate associations between the lack of teeth and the expression of MyHC in the masseter and digastric muscles but not such associations in the temporalis muscle, suggesting that the influence of tooth deficiency varies among the masticatory muscles.
Collapse
Affiliation(s)
- Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
8
|
Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the γ subunit in hair cells. J Neurochem 2011; 103:2651-64. [PMID: 17961150 DOI: 10.1111/j.1471-4159.2007.04980.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine is a key neurotransmitter of the inner ear efferent system. In this study, we identify two novel nAChR subunits in the inner ear: α1 and γ, encoded by Chrna1 and Chrng, respectively. In situ hybridization shows that the messages of these two subunits are present in vestibular and cochlear hair cells during early development. Chrna1 and Chrng expression begin at embryonic stage E13.5 in the vestibular system and E17.5 in the organ of Corti. Chrna1 message continues through P7, whereas Chrng is undetectable at post-natal stage P6. The α1 and γ subunits are known as muscle-type nAChR subunits and are surprisingly expressed in hair cells which are sensory-neural cells. We also show that ATOH1/MATH1, a transcription factor essential for hair cell development, directly activates CHRNA1 transcription. Electrophoretic mobility-shift assays and supershift assays showed that ATOH1/E47 heterodimers selectively bind on two E boxes located in the proximal promoter of CHRNA1. Thus, Chrna1 could be the first transcriptional target of ATOH1 in the inner ear. Co-expression in Xenopus oocytes of the α1 subunit does not change the electrophysiological properties of the α9α10 receptor. We suggest that hair cells transiently express α1γ-containing nAChRs in addition to α9α10, and that these may have a role during development of the inner ear innervation.
Collapse
|
9
|
Nariyama M, Kota Y, Tashima I, Tomohiro T, Yamane A, Asada Y. Effect of third molar absence on development of masticatory muscles in EL mice. PEDIATRIC DENTAL JOURNAL 2010. [DOI: 10.1016/s0917-2394(10)70204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Kota Y, Yamane A, Tomohiro T, Asada Y. Contribution of occlusal activity to synaptogenesis in masticatory muscles. J Dent Res 2009; 88:768-72. [PMID: 19734467 DOI: 10.1177/0022034509341738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synaptogenesis in the neuromuscular junction involves a nicotinic acetylcholine receptor (nAChR) switch and elimination. The microphthalmic mouse (mi/mi) with a mutation in the mitf gene cannot perform occlusal activity, because its teeth do not erupt. The present study attempted to elucidate the contribution of occlusal activity to synaptogenesis in masticatory muscles. In the masseter of the mi/mi, the nAChR elimination initiated, but did not progress normally, after 3 weeks of age, when the occlusal activity emerged in the +/+ mouse, whereas the nAChR switch progressed normally during the entire period of synaptogenesis. The mRNA expression patterns of nAChR subunits in the temporalis and digastric of the mi/mi differed from those in its masseter. These findings suggest that, in the masseter, occlusal activity is essential for the completion of nAChR elimination, but not for the nAChR switch, and that the contribution of occlusal activity to synaptogenesis varies among the masticatory muscles.
Collapse
Affiliation(s)
- Y Kota
- Departments of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501 Japan
| | | | | | | |
Collapse
|
11
|
Yamane A. Embryonic and postnatal development of masticatory and tongue muscles. Cell Tissue Res 2005; 322:183-9. [PMID: 16041600 DOI: 10.1007/s00441-005-0019-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/17/2005] [Indexed: 11/26/2022]
Abstract
This review summarizes findings concerning the unique developmental characteristics of mouse head muscles (mainly the masticatory and tongue muscles) and compares their characteristics with those of other muscles. The developmental origin of the masticatory muscles is the somitomeres, whereas the tongue and other muscles, such as the trunk (deep muscles of the back, body wall muscles) and limb muscles, originate from the somites. The program controlling the early stages of masticatory myogenesis, such as the specification and migration of muscle progenitor cells, is distinctly different from those in trunk and limb myogenesis. Tongue myogenesis follows a similar regulatory program to that for limb myogenesis. Myogenesis and synaptogenesis in the masticatory muscles are delayed in comparison with other muscles and are not complete even at birth, whereas the development of tongue muscles proceeds faster than those of other muscles and ends at around birth. The regulatory programs for masticatory and tongue myogenesis seem to depend on the developmental origins of the muscles, i.e., the origin being either a somite or somitomere, whereas myogenesis and synaptogenesis seem to progress to serve the functional requirements of the masticatory and tongue muscles.
Collapse
Affiliation(s)
- A Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
12
|
Effects of Exogenous Bone Morphogenetic Protein 2 on the Formation of Mouse Molar Tooth Germ. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Yamane A, Amano O, Urushiyama T, Nagata J, Akutsu S, Fukui T, Diekwisch TGH. Exogenous hepatocyte growth factor inhibits myoblast differentiation by inducing myf5 expression and suppressing myoD expression in an organ culture system of embryonic mouse tongue. Eur J Oral Sci 2004; 112:177-81. [PMID: 15056116 DOI: 10.1111/j.0909-8836.2004.00106.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the effects of exogenous hepatocyte growth factor (HGF) on the differentiation and proliferation of tongue myoblasts by using an organ culture system of tongue obtained from mouse embryos at embryonic day (E) 13. Exogenous HGF induced reductions in the quantities of muscle creatine kinase and myogenin mRNAs and in the number of fast myosin heavy chain-positive myoblasts and myotubes, suggesting that HGF suppressed the differentiation of myoblasts in the cultured E13 tongues. Exogenous HGF induced no significant changes in the percentage of proliferating cell nuclear antigen (PCNA)-positive cell nuclei to total cell nuclei (labeling index) in the muscle portion of the cultured E13 tongue, suggesting that HGF did not affect the proliferation of myoblasts. Exogenous HGF induced the expression of myf5 mRNA but inhibited the expression of myoD mRNA. Since mouse tongue myoblasts are reported to complete proliferation by E13, it appears that exogenous HGF arrests myoblasts in the cell cycle and does not allow them to enter the differentiation process. This is achieved by controlling the expression of myf5 and myoD mRNAs, thus inhibiting the differentiation of tongue myoblasts.
Collapse
Affiliation(s)
- Akira Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|