1
|
Kaupp UB, Kendall O. David Garbers' Contributions to Chemotaxis Signaling in Sperm. Mol Reprod Dev 2024; 91:e23774. [PMID: 39445585 DOI: 10.1002/mrd.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
This review focuses on the contribution of the late David Garbers to chemotaxis of sperm, in particular from sea urchin. We will describe his discovery of chemotactic peptides and their cognate receptors, his discovery of a sperm-specific, unique Na+/H+ exchanger that represents a chimera between a solute carrier (SLC) and an ion channel. Finally, we will discuss his contributions to the understanding of cAMP signaling in sperm via soluble adenylyl cyclase (sAC) and its control by Ca2+ ions.
Collapse
Affiliation(s)
- U B Kaupp
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Olivia Kendall
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Takeda-Sakazume A, Honjo J, Sasano S, Matsushima K, Baba SA, Mogami Y, Hatta M. Gravitactic Swimming of the Planula Larva of the Coral Acropora: Characterization of Straightforward Vertical Swimming. Zoolog Sci 2023; 40:44-52. [PMID: 36744709 DOI: 10.2108/zs220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
Vertical migration as well as horizontal dispersion is important in the ecological strategy of planktonic larvae of sedentary corals. We report in this paper unique vertical swimming behavior of planulae of the reef-building coral Acropora tenuis. Several days after fertilization, most of the planulae stayed exclusively at either the top or the bottom of the rearing tank. A good proportion of the planulae migrated almost vertically between top and bottom with fairly straight trajectories. Planulae sometimes switched their swimming direction via a sharp turn between the opposite directions. Quantitative analyses demonstrated that planulae kept constant speed while swimming either upward or downward, in contrast to frequent changes of direction and speed in horizontal swimming. Statistical comparison of propulsive speeds, estimated from swimming speeds and passive sedimentation, revealed gravikinesis of planulae, where the propulsive speed was significantly greater in downward swimming than upward swimming. The larval density hydrodynamically estimated was 0.25% lower than sea water density, which might be explained by the large quantity of lipids in planulae. Also, the deciliated larvae tended to orient oral end-up during floatation, presumably due to asymmetrical distribution of the endogenous light lipids. Plasticity of the larval tissue geometry could easily cause relocation of the center of forces which work together to generate gravitactic-orientation torque and, therefore, abrupt changing of the gravitactic swimming direction. The bimodal gravitactic behavior may give a new insight into dispersal and recruitment of coral larvae.
Collapse
Affiliation(s)
- Asuka Takeda-Sakazume
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Junko Honjo
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Sachia Sasano
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kanae Matsushima
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Shoji A Baba
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoshihiro Mogami
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Masayuki Hatta
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan,
| |
Collapse
|
3
|
Abstract
In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idán Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
4
|
In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility. PLoS One 2014; 9:e104451. [PMID: 25162222 PMCID: PMC4146467 DOI: 10.1371/journal.pone.0104451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl- channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work.
Collapse
|
5
|
Sugiyama H, Chandler DE. Sperm guidance to the egg finds calcium at the helm. PROTOPLASMA 2014; 251:461-475. [PMID: 24085342 DOI: 10.1007/s00709-013-0550-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Sperm respond to multiple cues during guidance to the egg including chemical attractants, temperature, and fluid flow. Of these, sperm chemotaxis has been studied most extensively-over 100 years-but only recently has it started to be understood at the molecular level. The long gestation in this understanding has largely been due to technical limitations that include the detection of calcium signal dynamics in a relatively small structure-the flagellum, measurement of actual chemoattractant gradients, the fact that only subpopulations of sperm respond at any given time, and the diversity in swimming behaviors that sperm exhibit from different species. Today, measurements of flagellar calcium signals on a fast time scale, discovery of the ion channels and organelles that may regulate these signals, and better understanding and quantitation of sperm swimming behaviors involved have given more certainty to our understanding of sperm directional swimming and its control by characteristic, calcium-directed asymmetric flagellar bends. Future research will need to apply these technical advances to other forms of sperm guidance such as thermotaxis and rheotaxis as well as gaining an understanding of how the flagellar apparatus is controlled by calcium.
Collapse
Affiliation(s)
- Hitoshi Sugiyama
- Science and Technology Group, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | | |
Collapse
|
6
|
Burnett LA, Washburn CA, Sugiyama H, Xiang X, Olson JH, Al-Anzi B, Bieber AL, Chandler DE. Allurin, an amphibian sperm chemoattractant having implications for mammalian sperm physiology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:1-61. [PMID: 22449486 DOI: 10.1016/b978-0-12-394306-4.00007-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eggs of many species are surrounded by extracellular coats that emit ligands to which conspecific sperm respond by undergoing chemotaxis and changes in metabolism, motility, and acrosomal status in preparation for fertilization. Here we review methods used to measure sperm chemotaxis and focus on recent studies of allurin, a 21-kDa protein belonging to the Cysteine-RIch Secretory Protein (CRISP) family that has chemoattraction activity for both amphibian and mammalian sperm. Allurin is unique in being the first extensively characterized Crisp protein found in the female reproductive tract and is the product of a newly discovered amphibian gene within a gene cluster that has been largely conserved in mammals. Study of its expression, function, and tertiary structure could lead to new insights in the role of Crisp proteins in sperm physiology.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tholl N, Naqvi S, McLaughlin E, Boyles S, Bieber AL, Chandler DE. Swimming of Xenopus laevis sperm exhibits multiple gears and its duration is extended by egg jelly constituents. THE BIOLOGICAL BULLETIN 2011; 220:174-185. [PMID: 21712226 DOI: 10.1086/bblv220n3p174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The motility of Xenopus sperm is initiated by the osmotic shock experienced when these cells are ejaculated into low-salinity pond water. Motility is brief and is required for the sperm to penetrate the jelly layers and fertilize the egg. In this study we demonstrate that extracts of egg jelly contain factors that extend the period of sperm motility as well as providing a chemoattractant activity as previously reported. Both activities are partially dependent on extracellular calcium. Time-lapse and video microscopy show that after activation of motility the number of motile sperm decreases rapidly, with a half-time of about 2 min. Addition of 10% v/v egg jelly extract ("egg water") increased the number of motile sperm 2-fold over controls at 20 s and about 4- to 10-fold over controls at 10 min after initiation of motility. Extension of motility lifetime was not mediated by a nonspecific protein or by allurin, the egg-water protein that has chemoattractant activity. The helical path of Xenopus sperm exhibited tight coupling between rotational and forward velocities in egg jelly, but coupling changed rapidly from moment to moment in low-salinity buffer. Our observations suggest that jelly-derived factors regulate both the longevity and directionality of sperm propulsion.
Collapse
Affiliation(s)
- Nathan Tholl
- Molecular and Cellular Biology Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yoshida M, Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 2011; 17:457-65. [PMID: 21610215 DOI: 10.1093/molehr/gar041] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan.
| | | |
Collapse
|
9
|
Himes JE, Riffell JA, Zimmer CA, Zimmer RK. Sperm chemotaxis as revealed with live and synthetic eggs. THE BIOLOGICAL BULLETIN 2011; 220:1-5. [PMID: 21385951 DOI: 10.1086/bblv220n1p1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fertilization is one of the least understood fundamental biological processes. How sperm search for and find an egg remains enigmatic. Sperm attraction to egg-derived chemical cues may be significant evolutionarily for maintaining species barriers and important ecologically for increasing gamete encounters. New tools are needed, however, to resolve the functional consequences of these dissolved signal molecules. Freshly spawned eggs from red abalone (Haliotis rufescens) naturally release l-tryptophan, which stimulates chemotactic responses by conspecific sperm. Here, microspheres were manufactured to the approximate size and the same shape as female gametes and formulated to emit controlled doses of chemoattractant, imitating natural l-tryptophan release rates. When experimentally tested for effectiveness, male gametes did not distinguish between chemically impregnated mimics and live eggs, demonstrating that l-tryptophan alone is both necessary and sufficient to promote chemotaxis, and confirming the identity of a native sperm attractant. The techniques that we describe can be used to create synthetic eggs for most animal and plant species, including humans. Egg mimics increase the capacity for experimental manipulation and enable realistic studies of sperm behavior even in the absence of female gametes.
Collapse
Affiliation(s)
- Julie E Himes
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
10
|
Fabbrocini A, Di Stasio M, D'Adamo R. Computerized sperm motility analysis in toxicity bioassays: a new approach to pore water quality assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1588-1595. [PMID: 20537390 DOI: 10.1016/j.ecoenv.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/28/2010] [Accepted: 05/02/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to test the sensitivity of computerized sperm motility analysis in the sea urchin Paracentrotus lividus as the endpoint in toxicity bioassays. The tested matrices were pore water samples collected in an agriculture-impacted Mediterranean lagoon, Lake Varano (Italy). Two standardized bioassays were also conducted as controls, the P. lividus spermiotoxicity test and the Vibrio fischeri (Microtox®) test. VCL (curvilinear velocity), VSL (straight line velocity), VAP (average path velocity), and the percentage of rapid spermatozoa recorded by the Sperm Class Analyzer® system showed high sensitivity and discrimination ability, to a degree comparable with the larval development endpoint of the spermiotoxicity test. The test evaluated in this study requires small volumes of matrices, involves minimal sample manipulation, and can easily be extended to many other bioindicator species. It may therefore be considered a promising "quick response tool" following hazardous events that may adversely affect an aquatic ecosystem.
Collapse
Affiliation(s)
- Adele Fabbrocini
- Consiglio Nazionale delle Ricerche-Istituto di Scienze Marine, UOS Lesina, via Pola 4, 71010 Lesina (FG), Italy.
| | | | | |
Collapse
|
11
|
Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish. J Neurosci 2009; 29:6780-93. [PMID: 19474306 DOI: 10.1523/jneurosci.0801-09.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In teleost fish, the Mauthner (M) cell, a large reticulospinal neuron in the brainstem, triggers escape behavior. Spinal commissural inhibitory interneurons that are electrotonically excited by the M-axon have been identified, but the behavioral roles of these neurons have not yet been addressed. Here, we studied these neurons, named CoLo (commissural local), in larval zebrafish using an enhancer-trap line in which the entire population of CoLos was visualized by green fluorescent protein. CoLos were present at one cell per hemi-segment. Electrophysiological recordings showed that an M-spike evoked a spike in CoLos via electrotonic transmission and that CoLos made monosynaptic inhibitory connections onto contralateral primary motoneurons, consistent with the results in adult goldfish. We further showed that CoLos were active only during escapes. We examined the behavioral roles of CoLos by investigating escape behaviors in CoLo-ablated larvae. The results showed that the escape behaviors evoked by sound/vibration stimuli were often impaired with a reduced initial bend of the body, indicating that CoLos play important roles in initiating escapes. We obtained several lines of evidence that strongly suggested that the impaired escapes occurred during bilateral activation of the M-cells: in normal larvae, CoLo-mediated inhibitory circuits enable animals to perform escapes even in these occasions by silencing the output of the slightly delayed firing of the second M-cell. This study illustrates (1) a clear example of the behavioral role of a specialized class of interneurons and (2) the capacity of the spinal circuits to filter descending commands and thereby produce the appropriate behavior.
Collapse
|
12
|
Smith DJ, Gaffney EA, Gadêlha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. ACTA ACUST UNITED AC 2009; 66:220-36. [DOI: 10.1002/cm.20345] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, Hoshi M. Egg and sperm recognition systems during fertilization. Dev Growth Differ 2008; 50 Suppl 1:S221-38. [DOI: 10.1111/j.1440-169x.2008.01017.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Affiliation(s)
- U. Benjamin Kaupp
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Nachiket D. Kashikar
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| | - Ingo Weyand
- Forschungszentrum Jülich, Institut für Neurowissenschaften und Biophysik 1, D-52425 Jülich, Germany;
| |
Collapse
|
15
|
Burnett LA, Boyles S, Spencer C, Bieber AL, Chandler DE. Xenopus tropicalis allurin: expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity. Dev Biol 2008; 316:408-16. [PMID: 18342304 DOI: 10.1016/j.ydbio.2008.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Previously we reported the identification of the first vertebrate sperm chemoattractant, allurin, in the frog Xenopus laevis (Xl) and demonstrated that it was a member of the CRISP family of proteins. Here we report identification, purification, and characterization of Xenopus tropicalis (Xt) allurin, a homologous protein in X. tropicalis. "Egg water" as well as purified allurin from both species exhibit efficient cross-species sperm chemoattractant activity. Western blots show that Xt egg water contains a single anti-allurin cross-reactive protein whose molecular weight (20,497 Da by MALDI MS) agrees well with the molecular weight of the hypothetical gene product for a newly recognized "Crisp A" gene in the X. tropicalis genome. A recombinant form of the protein, expressed in 3T3 cells, exhibits chemoattraction for both Xt and Xl sperm and cross reacts with anti-allurin antibodies. Examination of Crisp protein expression in the Xt oviduct using RT-PCR showed that of five documented Xt Crisp genes (Crisps 2, 3, LD1, LD2 and A) only Crisp A was expressed. In contrast, Crisp 2, Crisp 3, Crisp LD1, and Crisp LD2, but not Crisp A, were all found to be expressed in the Xt testes while subsets of Crisp proteins where expressed in the Xt ovary. These data suggest that Crisp proteins in amphibians may play multiple roles in sperm production, maturation and guidance just as they are thought to in mammals indicating that Crisp protein involvement in reproduction may not be limited to mammals.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Program, School of Life Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
16
|
Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 2008; 313:630-47. [DOI: 10.1016/j.ydbio.2007.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
17
|
Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Dev Biol 2007; 306:525-37. [PMID: 17467684 DOI: 10.1016/j.ydbio.2007.03.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 11/22/2022]
Abstract
Speract, an egg-derived sperm-activating peptide, induces changes in intracellular Ca2+, Na+, pH, cAMP, cGMP, and membrane potential in sperm of the sea urchin Strongylocentrotus purpuratus. Ca2+ is a key regulator of motility in all sperm and, in many marine species, is required for generating turns interspersed with straighter swimming paths that are essential for chemotaxis towards the egg. We show that speract triggers a train of increases in flagellar Ca2+, and that each individual Ca2+ fluctuation induces a transient increase in flagellar asymmetry that leads to a turn. We also find that modifying the amplitude, duration and interval between individual Ca2+ fluctuations by treating sperm with niflumic acid, an inhibitor of Ca2+-activated Cl(-) channels, correspondingly alters the properties of the sperm turns. We conclude that Ca2+ entry through a fast flagellar pathway not only induces sperm turns, but the kinetics of Ca2+ entry may shape the nature of these turns, and that these kinetics are tuned by other channels, possibly including Cl(-) channels. In addition, the speract-induced changes in sperm motility closely resemble those seen during chemotaxis in other marine organisms, yet speract is not a chemoattractant. This implies the Ca2+-induced motility changes are necessary but not sufficient for chemotaxis.
Collapse
Affiliation(s)
- Christopher D Wood
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | | | | | | | | | | | |
Collapse
|
18
|
Beltrán C, Galindo BE, Rodríguez-Miranda E, Sánchez D. Signal transduction mechanisms regulating ion fluxes in the sea urchin sperm. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Kaupp UB, Hildebrand E, Weyand I. Sperm chemotaxis in marine invertebrates--molecules and mechanisms. J Cell Physiol 2006; 208:487-94. [PMID: 16619222 DOI: 10.1002/jcp.20669] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sperm are attracted by chemical substances which are released by the egg. This process is called chemotaxis. Several molecules that are involved in chemotactic signaling of sperm from marine invertebrates are described and a model of the signaling pathway is presented. We discuss the motor response during chemotaxis and propose a model of the navigation strategy of sperm.
Collapse
Affiliation(s)
- U B Kaupp
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
20
|
Abstract
Sperm become attracted by chemical substances that are released from the outer coating of the egg, a process called chemotaxis. In this paper the cellular pathway and the motor response during chemotaxis of sperm from sea urchin and starfish are briefly outlined.
Collapse
Affiliation(s)
- E Hildebrand
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany
| | | |
Collapse
|
21
|
Böhmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M, Hoshi M, Hildebrand E, Kaupp UB. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J 2005; 24:2741-52. [PMID: 16001082 PMCID: PMC1182239 DOI: 10.1038/sj.emboj.7600744] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 06/16/2005] [Indexed: 11/09/2022] Open
Abstract
The events that occur during chemotaxis of sperm are only partly known. As an essential step toward determining the underlying mechanism, we have recorded Ca2+ dynamics in swimming sperm of marine invertebrates. Stimulation of the sea urchin Arbacia punctulata by the chemoattractant or by intracellular cGMP evokes Ca2+ spikes in the flagellum. A Ca2+ spike elicits a turn in the trajectory followed by a period of straight swimming ('turn-and-run'). The train of Ca2+ spikes gives rise to repetitive loop-like movements. When sperm swim in a concentration gradient of the attractant, the Ca2+ spikes and the stimulus function are synchronized, suggesting that precise timing of Ca2+ spikes controls navigation. We identified the peptide asterosap as a chemotactic factor of the starfish Asterias amurensis. The Ca2+ spikes and swimming behavior of sperm from starfish and sea urchin are similar, implying that the signaling pathway of chemotaxis has been conserved for almost 500 million years.
Collapse
Affiliation(s)
- Martin Böhmer
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| | - Qui Van
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| | - Volker Hagen
- Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Midori Matsumoto
- Center for Life Science and Technology, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Motonori Hoshi
- Center for Life Science and Technology, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Eilo Hildebrand
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|