1
|
Rincón‐Camacho L, Jungblut LD, Pandolfi M, Pozzi AG. Ultrastructural and immunohistochemical characteristics of the olfactory organ Cardinal tetra,
Paracheirodon axelrodi
(Characiformes: Characidae). J Morphol 2022; 283:815-826. [DOI: 10.1002/jmor.21473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Rincón‐Camacho
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Lucas D. Jungblut
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| | - Andrea G. Pozzi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada‐CONICET
| |
Collapse
|
2
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 2020; 383:289-299. [PMID: 33247771 DOI: 10.1007/s00441-020-03330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a "middle cavity" epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlapping sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.
Collapse
|
4
|
Weiss L, Jungblut LD, Pozzi AG, O’Connell LA, Hassenklöver T, Manzini I. Conservation of Glomerular Organization in the Main Olfactory Bulb of Anuran Larvae. Front Neuroanat 2020; 14:44. [PMID: 32792916 PMCID: PMC7393516 DOI: 10.3389/fnana.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
The glomerular array in the olfactory bulb of many vertebrates is segregated into molecularly and anatomically distinct clusters linked to different olfactory functions. In anurans, glomerular clustering is so far only described in Xenopus laevis. We traced olfactory projections to the bulb in tadpoles belonging to six distantly related anuran species in four families (Pipidae, Hylidae, Bufonidae, Dendrobatidae) and found that glomerular clustering is remarkably conserved. The general bauplan consists of four unequally sized glomerular clusters with minor inter-species variation. During metamorphosis, the olfactory system undergoes extensive remodeling. Tracings in metamorphotic and juvenile Dendrobates tinctorius and Xenopus tropicalis suggest a higher degree of variation in the glomerular organization after metamorphosis is complete. Our study highlights, that the anatomical organization of glomeruli in the main olfactory bulb (MOB) is highly conserved, despite an extensive ecomorphological diversification among anuran tadpoles, which suggests underlying developmental constraints.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lucas D. Jungblut
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G. Pozzi
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Pintos S, Rincon-Camacho L, Pandolfi M, Pozzi AG. Morphology and immunohistochemistry of the olfactory organ in the bloodfin tetra, Aphyocharax anisitsi (Ostariophysi: Characidae). J Morphol 2020; 281:986-996. [PMID: 32562593 DOI: 10.1002/jmor.21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 11/08/2022]
Abstract
Among teleost fishes, differences exist in the shape, number, and arrangement of the olfactory lamellae, the distribution of the sensory and non-sensory epithelium, as well as, the abundance of various receptor cells. The objective of this work was to describe the morphology, immunohistochemistry, and scanning electron microscopy ultrastructure of the olfactory epithelium of the bloodfin tetra, Aphyocharax anisitsi. This is the first complete description including the anatomy, histology, and immunohistochemistry of the peripheral olfactory organ from a Characiformes. Based on the external morphology of the olfactory organ, A. anisitsi was classified as a ditermous species, with an olfactory cavity containing two openings divided by a skin flap that separates the anterior and posterior nostril. This species belongs to the group of isosmates, since the presence of accessory olfactory sacs was not observed, and non-sensory ciliated cells were identified. A. anisitsi has an olfactory rosette with an arrow-shaped arrangement, with differences in length between the anterior and posterior lamellae. In the olfactory epithelium, three types of olfactory receptor neurons were identified using histology and confirmed by immunohistochemistry, that is, ciliated olfactory receptor neurons in the basal region of the epithelium, microvillar olfactory receptor neurons in the middle region; and Crypt cells, in smaller numbers compared to the other neuronal types, present in the apical region. Sensory and non-sensory areas were scattered and mixed along the lamellar lateral surface but the nasal cavity and the midline raphe lacked olfactory receptor neurons. The presence of abundant kinocilia in the non-sensory cells could be related in A. anisitsi with ventilation and quality control of water entering the olfactory cavity. The spatial organization of the sensory and non-sensory areas in A. anisitsi was similar to that observed in other species that also inhabit still and slow-flowing bodies of water with high-density vegetation.
Collapse
Affiliation(s)
- Santiago Pintos
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Rincon-Camacho
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
| | - Matias Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
| | - Andrea G Pozzi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Bettini S, Lazzari M, Franceschini V. Molecular Markers in the Study of Non-model Vertebrates: Their Significant Contributions to the Current Knowledge of Tetrapod Glial Cells and Fish Olfactory Neurons. Results Probl Cell Differ 2019; 68:355-377. [PMID: 31598864 DOI: 10.1007/978-3-030-23459-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The knowledge of the morphological and functional aspects of mammalian glial cells has greatly increased in the last few decades. Glial cells represent the most diffused cell type in the central nervous system, and they play a critical role in the development and function of the brain. Glial cell dysfunction has recently been shown to contribute to various neurological disorders, such as autism, schizophrenia, pain, and neurodegeneration. For this reason, glia constitutes an interesting area of research because of its clinical, diagnostic, and pharmacological relapses. In this chapter, we present and discuss the cytoarchitecture of glial cells in tetrapods from an evolutive perspective. GFAP and vimentin are main components of the intermediate filaments of glial cells and are used as cytoskeletal molecular markers because of their high degree of conservation in the various vertebrate groups. In the anamniotic tetrapods and their progenitors, Rhipidistia (Dipnoi are the only extant rhipidistian fish), the cytoskeletal markers show a model based exclusively on radial glial cells. In the transition from primitive vertebrates to successively evolved forms, the emergence of a new model has been observed which is believed to support the most complex functional aspects of the nervous system in the vertebrates. In reptiles, radial glial cells are prevalent, but star-shaped astrocytes begin to appear in the midbrain. In endothermic amniotes (birds and mammals), star-shaped astrocytes are predominant. In glial cells, vimentin is indicative of immature cells, while GFAP indicates mature ones.Olfactory receptor neurons undergo continuous turnover, so they are an easy model for neurogenesis studies. Moreover, they are useful in neurotoxicity studies because of the exposed position of their apical pole to the external environment. Among vertebrates, fish represent a valid biological model in this field. In particular, zebrafish, already used in laboratories for embryological, neurobiological, genetic, and pathophysiological studies, is the reference organism in olfactory system research. Smell plays an important role in the reproductive behavior of fish, with direct influences also on the numerical consistency of their populations. Taking into account that a lot of species have considerable economic importance, it is necessary to verify if the model of zebrafish olfactory organ is also directly applicable to other fish. In this chapter, we focus on crypt cells, a morphological type of olfactory cells specific of fish. We describe hypothetical function (probably related with social behavior) and evolutive position of these cells (prior to the appearance of the vomeronasal organ in tetrapods). We also offer the first comparison of the molecular characteristics of these receptors between zebrafish and the guppy. Interestingly, the immunohistochemical expression patterns of known crypt cell markers are not overlapping in the two species.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Malick C, Chatterjee SK, Bhattacharya S, Suresh VR, Kundu R, Saikia SK. Structural organization of the olfactory organ in an amphihaline migratory fish Hilsa, Tenualosa ilisha. Microsc Res Tech 2018; 81:1122-1131. [PMID: 30238561 DOI: 10.1002/jemt.23095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 11/06/2022]
Abstract
The histological as well as ultramicroscopic structures of olfactory system of an amphihaline migratory fish hilsa Tenualosa ilisha, were studied. The sexually matured riverine fish were collected from a common breeding habitat-the Hooghly, a tributary of river Ganga, West Bengal, India. This study revealed that the riverine hilsa has larger olfactory bulb compared to marine hilsa with the olfactory lobes well exposed through nostrils. The olfactory lamellae (OL) are 40-45 in number and posses three distinct layers of sensory cells across each lamellae, namely, outer receptor cells (RC), middle sensory cells, and inner basal cells (BC). Besides the above arrangement, the sensory part of olfactory epithelium (OE) also bears rich microvillous cells exposed to the surface of the OE. The sensory and non-sensory surfaces on OL are distinguishable, with clear dendritic cells on sensory epithelium and solitary chemosensory cells on non sensory OE. Abundance of both types of cells in the OE is an indication of its chemoattraction ability towards molecules of amino acid origin. The feature of having abundant, dense, and large dendritic knobs on the surface of OE describes resemblance to the typical morphology of the chemosensory septal organs neuron. The expression of four G protein subunits, like Gαs/olf, Gαq, Gαo, and Gαi-3 in OE indicate that its olfaction is a functional attributes of two olfactory systems, namely main olfactory system and Vomaronasal Olfactory System. Expression of ACIII and PLCβ2 in OE further confirms two signaling pathways involved in odorant reception in hilsa. RESEARCH HIGHLIGHTS: The olfactory bulb in the amphihaline migratory fish hilsa is big in size, with 40-45 lamellae. Its sensory areas showed multilayered cellular features with prominent sensory as well as microvillous cells, whereas non-sensory area possesses solitary chemosensory cells. The expression of four G protein subunits, Gαs/olf, Gαq, Gαo, and Gαi-3 in olfactory epithelium indicates that its olfaction is a functional attributes of two olfactory systems, namely main olfactory system and vomaronasal olfactory system.
Collapse
Affiliation(s)
- Chandan Malick
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India.,Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Subhendu Kumar Chatterjee
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India.,Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Samir Bhattacharya
- Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Vettath Raghavan Suresh
- Riverine Ecology and Fisheries Division, Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
8
|
Jungblut LD, Reiss JO, Paz DA, Pozzi AG. Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group. J Morphol 2017; 278:1208-1219. [PMID: 28503895 DOI: 10.1002/jmor.20705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 01/11/2023]
Abstract
The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal-exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum, Hypsiboas pulchellus, and Xenopus laevis). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal-exposed olfactory epithelium was absent in X. laevis, and best developed in H. pulchellus. In postmetamorphic animals, the olfactory epithelium (air-sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus), whereas the vomeronasal and the middle chamber epithelia (water-sensitive organs) was best developed in X. laevis. A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus. These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis. They also support a role for the larval buccal-exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis, an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.
Collapse
Affiliation(s)
- Lucas David Jungblut
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - John O Reiss
- Department of Biological Sciences, Humboldt State University, Arcata, California
| | - Dante A Paz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Andrea G Pozzi
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
9
|
Ferrando S, Gallus L, Amaroli A, Gambardella C, Waryani B, Di Blasi D, Vacchi M. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo. ZOOLOGY 2017; 122:27-37. [PMID: 28268047 DOI: 10.1016/j.zool.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes.
Collapse
Affiliation(s)
- Sara Ferrando
- DISTAV - University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy.
| | - Lorenzo Gallus
- DISTAV - University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy
| | - Andrea Amaroli
- DISC - University of Genoa, Largo Rosanna Benzi 8, 16132 Genoa, Italy
| | | | - Baradi Waryani
- Department of Fresh Water Biology and Fisheries, Faculty of Natural Sciences, University of Sindh, Jamshoro, Pakistan
| | | | | |
Collapse
|
10
|
Ferrando S, Gallus L, Ghigliotti L, Vacchi M, Nielsen J, Christiansen JS, Pisano E. Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus. Polar Biol 2015. [DOI: 10.1007/s00300-015-1862-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis. Ann Anat 2014; 198:41-8. [PMID: 25488259 DOI: 10.1016/j.aanat.2014.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/27/2023]
Abstract
Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.
Collapse
|
12
|
Jungblut LD, Pozzi AG, Paz DA. A putative functional vomeronasal system in anuran tadpoles. J Anat 2012; 221:364-72. [PMID: 22774780 DOI: 10.1111/j.1469-7580.2012.01543.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 11/29/2022] Open
Abstract
We investigated the occurrence and anatomy of the vomeronasal system (VNS) in tadpoles of 13 different anuran species. All of the species possessed a morphologically fully developed VNS with a highly conserved anatomical organisation. We found that a bean-shaped vomeronasal organ (VNO) developed early in the tadpoles, during the final embryonic stages, and was located in the anteromedial nasal region. Histology revealed the presence of bipolar chemosensory neurones in the VNO that were immunoreactive for the Gαo protein. Tract-tracing experiments demonstrated that chemosensory neurones from the VNO reach specific areas in the brain, where a discernible accessory olfactory bulb (AOB) could be observed. The AOB was located in the ventrolateral side of the anterior telencephalon, somewhat caudal to the main olfactory bulb. Synaptophysin-like immunodetection revealed that synaptic contacts between VNO and AOB are established during early larval stages. Moreover, using lectin staining, we identified glomerular structures in the AOB in most of the species that we examined. According to our findings, a significant maturation in the VNS is achieved in anuran larvae. Recent published evidence strongly suggests that the VNS appeared early in vertebrate evolution and was already present in the aquatic last common ancestor of lungfish and tetrapods. In this context, tadpoles may be a good model in which to investigate the anatomical, biochemical and functional aspects of the VNS in an aquatic environment.
Collapse
Affiliation(s)
- Lucas David Jungblut
- Laboratorio de Biología del Desarrollo, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
13
|
Hagino-Yamagishi K, Nakazawa H. Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus. J Comp Neurol 2012; 519:3189-201. [PMID: 21618228 DOI: 10.1002/cne.22671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most terrestrial vertebrates possess anatomically distinct olfactory organs: the olfactory epithelium (OE) and the vomeronasal organ (VNO). In rodents, olfactory receptors coupled to Gα(olf) are expressed in the OE, whereas vomeronasal receptors type 1 (V1R) and vomeronasal receptors type 2 (V2R), coupled to Gα(i2) and Gα(o) , respectively, are expressed in the VNO. These receptors and G proteins are thought to play important roles in olfactory perception. However, we previously reported that only V2R and Gα(o) expression is detected in the Xenopus laevis VNO. As X. laevis spends its entire life in water, we considered that expression of limited types of chemosensory machinery in the VNO might be due to adaptation of the VNO to aquatic life. Thus, we analyzed the expression of G proteins in the VNO and the accessory olfactory bulb (AOB) of the adult Japanese toad, Bufo japonicus, because this species is well adapted to a terrestrial life. By using immunohistochemical analysis in combination with in situ hybridization and DiI labeling, we found that B. japonicus Gα(olf) and Gα(o) were expressed in the apical and middle-to-basal layer of the vomeronasal neuroepithelium, and that the axons of these Gα(olf) - and Gα(o) -expressing vomeronasal neurons projected to the rostral and caudal accessory olfactory bulb, respectively. These results strongly suggest that both the Gα(olf) - and Gα(o) -mediated signal transduction pathways function in the B. japonicus VNO. The expression of Gα(olf) in the B. japonicus VNO may correlate with the detection of airborne chemical cues and with a terrestrial life.
Collapse
Affiliation(s)
- Kimiko Hagino-Yamagishi
- Integrated Neuroscience Research Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | |
Collapse
|
14
|
Cummins SF, Bowie JH. Pheromones, attractants and other chemical cues of aquatic organisms and amphibians. Nat Prod Rep 2012; 29:642-58. [DOI: 10.1039/c2np00102k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Benzekri NA, Reiss JO. Olfactory metamorphosis in the coastal tailed frog Ascaphus truei (Amphibia, Anura, Leiopelmatidae). J Morphol 2011; 273:68-87. [PMID: 21935974 DOI: 10.1002/jmor.11008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/09/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022]
Abstract
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the "epithelial band") also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a "larval type" epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an "adult-type" epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the "recessus olfactorius" of other anurans and with the accessory nasal cavity of pipids and functions to detect water-borne odorants.
Collapse
Affiliation(s)
- Noëlle A Benzekri
- Department of Biological Sciences, Humboldt State University, Arcata, California 95521, USA
| | | |
Collapse
|
16
|
Ferrando S, Gallus L, Gambardella C, Amaroli A, Vallarino M, Tagliafierro G. Immunolocalization of G protein α subunits in the olfactory system of Polypterus senegalus (Cladistia, Actinopterygii). Neurosci Lett 2011; 499:127-31. [PMID: 21651958 DOI: 10.1016/j.neulet.2011.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/15/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022]
Abstract
In vertebrates, the receptor neurons of the olfactory/vomeronasal systems express different receptor gene families and related G-protein types (in particular the G protein alpha subunit). There are no data in the literature about the molecular features of the olfactory/vomeronasal systems of Cladistia thus, in this work, the presence and distribution of different types of G protein alpha subunits were investigated in the olfactory organs of the bichir Polypterus senegalus, using immunohistochemistry. Gαo-like immunoreactivity was detected in the microvillous receptor neurons, with the cell body in the basal zone of the sensory epithelium, and in the crypt neurons. Gαo-like ir glomeruli were mainly localized in the anterior part of the olfactory bulb. Gαolf-like immunoreactivity in the sensory epithelium was detected in the ciliated receptor neurons, while the immunoreactive glomeruli in the olfactory bulb were mainly localized in the ventral-posterior part. No Gαq nor Gαi3 immunoreactivity was detected. These data are partially in agreement with studies that show the distribution of G protein alpha subunits in teleosts, allowing to hypothesize a common organization of the olfactory/vomeronasal systems in the group of Actinopterigians.
Collapse
Affiliation(s)
- Sara Ferrando
- Department of Biology, University of Genoa, Viale Benedetto XV 5, I-16132 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Ubeda-Bañon I, Pro-Sistiaga P, Mohedano-Moriano A, Saiz-Sanchez D, de la Rosa-Prieto C, Gutierrez-Castellanos N, Lanuza E, Martinez-Garcia F, Martinez-Marcos A. Cladistic analysis of olfactory and vomeronasal systems. Front Neuroanat 2011; 5:3. [PMID: 21290004 PMCID: PMC3032080 DOI: 10.3389/fnana.2011.00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/11/2011] [Indexed: 12/02/2022] Open
Abstract
Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Ciencias Médicas, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Universidad de Castilla-la Mancha Ciudad Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jungblut LD, Pozzi AG, Paz DA. Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00461.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|