1
|
Ren H, Qu L, Shi W, Zhao W, Li L, Wu C, Li P, Wang J. CT based 3D radiomic and clinical airway examination model for evaluating mask ventilation in oral and maxillofacial surgery patients. Sci Rep 2025; 15:5665. [PMID: 39955372 PMCID: PMC11830077 DOI: 10.1038/s41598-025-90075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
The objective of this study is to develop a model that incorporates clinical measurements with 3D radiomic signatures extracted from CT images of oral and maxillofacial surgery patients to evaluate mask ventilation. A prospective cohort trial was conducted to enroll patients scheduled for oral and maxillofacial surgery. After obtaining informed consent, clinical measurements and head and neck CT images were collected. The anesthesiologist who managed the airway graded the mask ventilation. Difficult mask ventilation was defined as mask ventilation that required assistance or the use of an oral airway or other adjuvant by the anesthesiologist. For radiomics analysis, 3D airway segmentation was extracted and calculated 3D radiomic signatures and corresponding radiological features. Subsequently, features in the clinical measurements model and radiomic signatures model were determined using the least absolute shrinkage and selection operator (LASSO) classifier. A mixed model was developed that incorporated both radiomic signature features and clinical measurement features. A total of 716 patients were enrolled in the study. The mixed model combined the five 3D radiomic signatures and six clinical measurements, and was found to have the highest predictive accuracy. In the validation group, the mixed group had an area under the curve (AUC) of 0.851, which was higher than the AUC of 0.812 in the clinical measurements model and 0.827 in the radiomic signatures model. This study developed a mixed model that combines 3D radiomic signatures and clinical measurements. Its application in clinical practice can assist in identifying patients at risk of experiencing difficult mask ventilation during oral and maxillofacial surgeries.
Collapse
Affiliation(s)
- He Ren
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lingling Qu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Weiwei Shi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wenlong Zhao
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linhui Li
- Department of Otolaryngology Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chenyu Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ping Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Jiayi Wang
- Anesthesiology Department of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
3
|
Zhang Y, Feng W, Wu Z, Li W, Tao L, Liu X, Zhang F, Gao Y, Huang J, Guo X. Deep-Learning Model of ResNet Combined with CBAM for Malignant-Benign Pulmonary Nodules Classification on Computed Tomography Images. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1088. [PMID: 37374292 DOI: 10.3390/medicina59061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Lung cancer remains a leading cause of cancer mortality worldwide. Accurately classifying benign pulmonary nodules and malignant ones is crucial for early diagnosis and improved patient outcomes. The purpose of this study is to explore the deep-learning model of ResNet combined with a convolutional block attention module (CBAM) for the differentiation between benign and malignant lung cancer, based on computed tomography (CT) images, morphological features, and clinical information. Methods and materials: In this study, 8241 CT slices containing pulmonary nodules were retrospectively included. A random sample comprising 20% (n = 1647) of the images was used as the test set, and the remaining data were used as the training set. ResNet combined CBAM (ResNet-CBAM) was used to establish classifiers on the basis of images, morphological features, and clinical information. Nonsubsampled dual-tree complex contourlet transform (NSDTCT) combined with SVM classifier (NSDTCT-SVM) was used as a comparative model. Results: The AUC and the accuracy of the CBAM-ResNet model were 0.940 and 0.867, respectively, in test set when there were only images as inputs. By combining the morphological features and clinical information, CBAM-ResNet shows better performance (AUC: 0.957, accuracy: 0.898). In comparison, a radiomic analysis using NSDTCT-SVM achieved AUC and accuracy values of 0.807 and 0.779, respectively. Conclusions: Our findings demonstrate that deep-learning models, combined with additional information, can enhance the classification performance of pulmonary nodules. This model can assist clinicians in accurately diagnosing pulmonary nodules in clinical practice.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jian Huang
- School of Mathematical Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Lee K, Liu Z, Chandran U, Kalsekar I, Laxmanan B, Higashi MK, Jun T, Ma M, Li M, Mai Y, Gilman C, Wang T, Ai L, Aggarwal P, Pan Q, Oh W, Stolovitzky G, Schadt E, Wang X. Detecting Ground Glass Opacity Features in Patients With Lung Cancer: Automated Extraction and Longitudinal Analysis via Deep Learning-Based Natural Language Processing. JMIR AI 2023; 2:e44537. [PMID: 38875565 PMCID: PMC11041451 DOI: 10.2196/44537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND Ground-glass opacities (GGOs) appearing in computed tomography (CT) scans may indicate potential lung malignancy. Proper management of GGOs based on their features can prevent the development of lung cancer. Electronic health records are rich sources of information on GGO nodules and their granular features, but most of the valuable information is embedded in unstructured clinical notes. OBJECTIVE We aimed to develop, test, and validate a deep learning-based natural language processing (NLP) tool that automatically extracts GGO features to inform the longitudinal trajectory of GGO status from large-scale radiology notes. METHODS We developed a bidirectional long short-term memory with a conditional random field-based deep-learning NLP pipeline to extract GGO and granular features of GGO retrospectively from radiology notes of 13,216 lung cancer patients. We evaluated the pipeline with quality assessments and analyzed cohort characterization of the distribution of nodule features longitudinally to assess changes in size and solidity over time. RESULTS Our NLP pipeline built on the GGO ontology we developed achieved between 95% and 100% precision, 89% and 100% recall, and 92% and 100% F1-scores on different GGO features. We deployed this GGO NLP model to extract and structure comprehensive characteristics of GGOs from 29,496 radiology notes of 4521 lung cancer patients. Longitudinal analysis revealed that size increased in 16.8% (240/1424) of patients, decreased in 14.6% (208/1424), and remained unchanged in 68.5% (976/1424) in their last note compared to the first note. Among 1127 patients who had longitudinal radiology notes of GGO status, 815 (72.3%) were reported to have stable status, and 259 (23%) had increased/progressed status in the subsequent notes. CONCLUSIONS Our deep learning-based NLP pipeline can automatically extract granular GGO features at scale from electronic health records when this information is documented in radiology notes and help inform the natural history of GGO. This will open the way for a new paradigm in lung cancer prevention and early detection.
Collapse
Affiliation(s)
| | | | - Urmila Chandran
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ, United States
| | - Iftekhar Kalsekar
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ, United States
| | - Balaji Laxmanan
- Lung Cancer Initiative, Johnson & Johnson, New Brunswick, NJ, United States
| | | | - Tomi Jun
- Sema4, Stamford, CT, United States
| | - Meng Ma
- Sema4, Stamford, CT, United States
| | | | - Yun Mai
- Sema4, Stamford, CT, United States
| | | | | | - Lei Ai
- Sema4, Stamford, CT, United States
| | | | - Qi Pan
- Sema4, Stamford, CT, United States
| | - William Oh
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
5
|
Wu FZ, Wu YJ, Tang EK. An integrated nomogram combined semantic-radiomic features to predict invasive pulmonary adenocarcinomas in subjects with persistent subsolid nodules. Quant Imaging Med Surg 2023; 13:654-668. [PMID: 36819273 PMCID: PMC9929384 DOI: 10.21037/qims-22-308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Background Patients with persistent pulmonary subsolid nodules have a relatively high incidence of lung adenocarcinoma. Preoperative early diagnosis of invasive pulmonary adenocarcinoma spectrum lesions could help avoid extensive advanced cancer management and overdiagnosis in lung cancer screening programs. Methods In total, 260 consecutive patients with persistent subsolid nodules ≤30 mm (n=260) confirmed by surgical pathology were retrospectively investigated from February 2016 to August 2020 at the Kaohsiung Veterans General Hospital. All patients underwent surgical resection within 3 months of the chest CT exam. The study subjects were divided into a training cohort (N=195) and a validation cohort (N=65) at a ratio of 3:1. The purpose of our study was to develop and validate a least absolute shrinkage and selection operator-derived nomogram integrating semantic-radiomic features in differentiating preinvasive and invasive pulmonary adenocarcinoma lesions, and compare its predictive value with clinical-semantic, semantic, and radiologist's performance. Results In the training cohort of 195 subsolid nodules, 106 invasive lesions and 89 preinvasive lesions were identified. We developed a least absolute shrinkage and selection operator-derived combined nomogram prediction model based on six predictors (nodular size, CTR, roundness, GLCM_Entropy_log10, HISTO_Entropy_log10, and CONVENTIONAL_Humean) to predict the invasive pulmonary adenocarcinoma lesions. Compared with other predictive models, the least absolute shrinkage and selection operator-derived model showed better diagnostic performance with an area under the curve of 0.957 (95% CI: 0.918 to 0.981) for detecting invasive pulmonary adenocarcinoma lesions with balanced sensitivity (92.45%) and specificity (88.64%). The results of Hosmer-Lemeshow test showed P values of 0.394 and 0.787 in the training and validation cohorts, respectively, indicating good calibration power. Conclusions We developed a least absolute shrinkage and selection operator-derived model integrating semantic-radiomic features with good calibration. This nomogram may help physicians to identify invasive pulmonary adenocarcinoma lesions for guidance in personalized medicine and make more informed decisions on managing subsolid nodules.
Collapse
Affiliation(s)
- Fu-Zong Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung
- Faculty of Medicine, School of Medicine, National Yang Ming University, Taipei
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung
| | - Yun-Ju Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung
| |
Collapse
|
6
|
Gao J, Qi Q, Li H, Wang Z, Sun Z, Cheng S, Yu J, Zeng Y, Hong N, Wang D, Wang H, Yang F, Li X, Li Y. Artificial-intelligence-based computed tomography histogram analysis predicting tumor invasiveness of lung adenocarcinomas manifesting as radiological part-solid nodules. Front Oncol 2023; 13:1096453. [PMID: 36910632 PMCID: PMC9996279 DOI: 10.3389/fonc.2023.1096453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Tumor invasiveness plays a key role in determining surgical strategy and patient prognosis in clinical practice. The study aimed to explore artificial-intelligence-based computed tomography (CT) histogram indicators significantly related to the invasion status of lung adenocarcinoma appearing as part-solid nodules (PSNs), and to construct radiomics models for prediction of tumor invasiveness. Methods We identified surgically resected lung adenocarcinomas manifesting as PSNs in Peking University People's Hospital from January 2014 to October 2019. Tumors were categorized as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) by comprehensive pathological assessment. The whole cohort was randomly assigned into a training (70%, n=832) and a validation cohort (30%, n=356) to establish and validate the prediction model. An artificial-intelligence-based algorithm (InferRead CT Lung) was applied to extract CT histogram parameters for each pulmonary nodule. For feature selection, multivariate regression models were built to identify factors associated with tumor invasiveness. Logistic regression classifier was used for radiomics model building. The predictive performance of the model was then evaluated by ROC and calibration curves. Results In total, 299 AIS/MIAs and 889 IACs were included. In the training cohort, multivariate logistic regression analysis demonstrated that age [odds ratio (OR), 1.020; 95% CI, 1.004-1.037; p=0.017], smoking history (OR, 1.846; 95% CI, 1.058-3.221; p=0.031), solid mean density (OR, 1.014; 95% CI, 1.004-1.024; p=0.008], solid volume (OR, 5.858; 95% CI, 1.259-27.247; p = 0.037), pleural retraction sign (OR, 3.179; 95% CI, 1.057-9.559; p = 0.039), variance (OR, 0.570; 95% CI, 0.399-0.813; p=0.002), and entropy (OR, 4.606; 95% CI, 2.750-7.717; p<0.001) were independent predictors for IAC. The areas under the curve (AUCs) in the training and validation cohorts indicated a better discriminative ability of the histogram model (AUC=0.892) compared with the clinical model (AUC=0.852) and integrated model (AUC=0.886). Conclusion We developed an AI-based histogram model, which could reliably predict tumor invasiveness in lung adenocarcinoma manifesting as PSNs. This finding would provide promising value in guiding the precision management of PSNs in the daily practice.
Collapse
Affiliation(s)
- Jian Gao
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Qingyi Qi
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Zhenfan Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Zewen Sun
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Jie Yu
- Department of Thoracic Surgery, Qingdao Women and Children's Hospital, Qingdao, China
| | - Yaqi Zeng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Dawei Wang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Huiyang Wang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Feng Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.,Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules. J Pers Med 2022; 13:jpm13010016. [PMID: 36675677 PMCID: PMC9865229 DOI: 10.3390/jpm13010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary nodules (PNs) shown as persistent or growing ground-glass opacities (GGOs) are usually lung adenocarcinomas or their preinvasive lesions. Tumor mutation burden (TMB) and somatic mutations are important determinants for the choice of strategy in patients with lung cancer during therapy. A total of 93 post-operative patients with 108 malignant PNs were enrolled for analysis (75 cases in the training cohort and 33 cases in the validation cohort). Radiomics features were extracted from preoperative non-contrast computed tomography (CT) images of the entire tumor. Using commercial next generation sequencing, we detected TMB status and somatic mutations of all FFPE samples. Here, 870 quantitative radiomics features were extracted from the segmentations of PNs, and pathological and clinical characteristics were collected from medical records. The LASSO (least absolute shrinkage and selection operator) regression and stepwise logistic regressions were performed to establish the predictive model. For the epidermal growth factor receptor (EGFR) mutation, the AUCs of the clinical model and the integrative model validated by the validation set were 0.6726 (0.4755-0.8697) and 0.7421 (0.5698-0.9144). For the TMB status, the ROCs showed that AUCs of the clinical model and the integrative model validated by the validation set were 0.7808 (0.6231-0.9384) and 0.8462 (0.7132-0.9791). The quantitative radiomics signatures showed potential value in predicting the EGFR mutant and TMB status in GGOs. Moreover, the integrative model provided sufficient information for the selection of therapy and deserves further analysis.
Collapse
|
8
|
Dang Y, Wang R, Qian K, Lu J, Zhang Y. Clinical and radiomic factors for predicting invasiveness in pulmonary ground‑glass opacity. Exp Ther Med 2022; 24:685. [PMID: 36277144 PMCID: PMC9533109 DOI: 10.3892/etm.2022.11621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with preinvasive or invasive pulmonary ground-glass opacity (GGO) often face different clinical treatments and prognoses. The present study aimed to identify the invasiveness of pulmonary GGO by analysing clinical and radiomic features. Patients with pulmonary GGOs who were treated between January 2014 and February 2019 were included. Clinical features were collected, while radiomic features were extracted from computed tomography records using the three-dimensional Slicer software. Predictors of GGO invasiveness were selected by least absolute shrinkage and selection operator logistic regression analysis, and receiver operating characteristic (ROC) curves were drawn for each prediction model. A total of 194 patients with pulmonary GGOs were included in the present study. The maximum diameter of the solid component, waveletHLL_ngtdm_Coarseness (P=0.03), waveletLHH_firstorder_Maximum (P<0.01) and waveletLLH_glrlm_LongRunEmphasis (P<0.01) were significant predictors of invasive lung GGOs. The area under the ROC curve (AUC) for the prediction models of clinical features and radiomic features was 0.755 and 0.719, respectively, whereas the AUC for the combined prediction model was 0.864 (95% CI, 0.802-0.926). Finally, a nomogram was established for individualized prediction of invasiveness. The combination of radiomic and clinical features can enable the differentiation between preinvasive and invasive GGOs. The present results can provide some basis for the best choice of treatment in patients with lung GGOs.
Collapse
Affiliation(s)
- Yutao Dang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
- Department of Thoracic Surgery, Shijingshan Hospital of Beijing City, Shijingshan Teaching Hospital of Capital Medical University, Beijing 100040, P.R. China
| | - Ruotian Wang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
9
|
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics (Basel) 2022; 12:diagnostics12051064. [PMID: 35626220 PMCID: PMC9139351 DOI: 10.3390/diagnostics12051064] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation and shared decision making.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Fu-Zong Wu
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| | - Shu-Ching Yang
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| |
Collapse
|
10
|
Deng Y, Xue R, Patel N, Xu W, Zhang H. Serum Extracellular Nano-Vesicles miR-153-3p to Identify Micronodular Lung Cancer from Sub-Centimeter Lung Nodules. J Biomed Nanotechnol 2022; 18:705-717. [PMID: 35715903 DOI: 10.1166/jbn.2022.3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of malignancy from sub-centimeter lung nodules (LNs, <1 cm) is core for prevention and treatment of primary phases of lung cancer (LC). The study's purpose was to predict micro-nodular lung cancer (mnLC), such as adenocarcinoma in situ (AIS), micro-invasive adenocarcinoma (MIA), and invasive adenocarcinoma stage 1 (IA1) based on serum extracellular nano-vesicles (sEVs) miR-153-3p. sEVs-miR-153-3p was selected in this study and then used to investigate the expression and efficacy by RT-qPCR in the validation phase, followed by sEVs derived from patients of mnLC, benign lung nodule (BLN), and healthy people groups comprised of 135 recruiters. Further, the study established the prediction model which combined sEVs-miR-153-3p expression with multiple clinical-radiomics features by Logistic algorithms and was authenticated by the area under curve (AUC) phenomenon. Then, a simple-to-use nomogram was developed by Cox proportional-hazards regression modeling for predicting mnLC. Besides, in vitro analyses were performed to demonstrate miR-153-3p/ROCK1 axis in regulating biological mechanisms using LC cell lines. Results demonstrated that sEVs-miR-153-5p's expression values were higher in mnLC patients compared to BLN and healthy people. The prediction model for mnLC was successfully established, utilizing sEVs-miR-153-5p biomarker with significant clinical-radiomics features and yielding an AUC = 0.943 (95%CI: 0.898~0.989, P <0.0001). Moreover, the miR-153-3p and its targeted gene ROCK1 were confirmed as down-regulated in NSCLC cell lines and up-regulated expression respectively. Moreover, the miR-153-3p/ROCK1 axis took part in promoting the epithelial-mesenchymal transition (EMT) signaling pathway and regulated certain biological functions, such as proliferation, migration and invasion of LC cells. Therefore, the sEVs-miR-153-3p associated with radiomics-clinical features showed enormous potential to non-invasively identify malignancy from subcentimeter LNs. miR-153-3p could promote the genesis and progress of LC via EMT signaling pathway, which may serve as a therapeutic target.
Collapse
Affiliation(s)
- Yuxia Deng
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Rongyu Xue
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Nishant Patel
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, P. R. China
| | - Wenwen Xu
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
11
|
Huang L, Lin W, Xie D, Yu Y, Cao H, Liao G, Wu S, Yao L, Wang Z, Wang M, Wang S, Wang G, Zhang D, Yao S, He Z, Cho WCS, Chen D, Zhang Z, Li W, Qiao G, Chan LWC, Zhou H. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur Radiol 2022; 32:1983-1996. [PMID: 34654966 PMCID: PMC8831242 DOI: 10.1007/s00330-021-08268-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical-radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions. METHODS This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development (n = 149) and internal validation (n = 54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models. RESULTS The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0-65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the three cohorts, respectively. The radiomic nomogram outperformed any clinical or radiomic signature in terms of clinical predictive abilities, according to a decision curve analysis and the Akaike information criteria. CONCLUSIONS This study demonstrated that a nomogram constructed by identified clinical-radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness. KEY POINTS • The radiomic signature from the perinodular area has the potential to predict pathology invasiveness of the solitary pulmonary nodule. • The new radiomic nomogram was useful in clinical decision-making associated with personalized surgical intervention and therapeutic regimen selection in patients with early-stage non-small-cell lung cancer.
Collapse
Affiliation(s)
- Luyu Huang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Weihuan Lin
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Daipeng Xie
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- AI & Digital Media Concentration Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Hanbo Cao
- Department of Radiology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Guoqing Liao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Shaowei Wu
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Lintong Yao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Zhaoyu Wang
- Department of Pathology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Mei Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siyun Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangyi Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongkun Zhang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zifan He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhengjie Zhang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Wanshan Li
- Clinical Medicine, Zhongshan School of Medicine, Yat-Sen University, Guangzhou, China
| | - Guibin Qiao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China.
| | - Lawrence Wing-Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Haiyu Zhou
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China.
| |
Collapse
|
12
|
Shi L, Zhao J, Peng X, Wang Y, Liu L, Sheng M. CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: Asystematic review. Eur J Radiol 2021; 144:109956. [PMID: 34563797 DOI: 10.1016/j.ejrad.2021.109956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To provide an overview of the available studies investigating the use of computer tomography (CT) radiomics features for differentiating invasive adenocarcinomas (IAC) from indolent lung adenocarcinomas presenting as ground-glass nodules (GGNs), to identify the bias of the studies and to propose directions for future research. METHOD PubMed, Embase, Web of Science Core Collection were searched for relevant studies. The studies differentiating IAC from indolent lung adenocarcinomas appearing as GGNs based on CT radiomics features were included. Basic information, patient information, CT-scanner information, technique information and performance information were extracted for each included study. The quality of each study was assessed using the Radiomic Quality Score (RQS) and the Prediction model Risk of Bias Assessment Tool (PROBAST). RESULTS Twenty-eight studies were included with patients ranging from 34 to 794. All of them were retrospective. Patients in three studies were from multiple centers. Most studies segmented regions of interest manually. Pyradiomics and AK software were the most frequently used for features extraction. The number of radiomics features extracted varied from 7 to 10329. Logistic regression was the most frequently chosen model. Entropy was identified as radiomics signature in seven studies. The AUC of included studies ranged from 0.77 to 0.98 in 15 validation sets. The percentage RQS ranged from 3% to 50%. According to PROBAST, the overall risk of bias (ROB) was high in 89.3% (25/28) of included studies, unclear in 7.1% (2/28) of included studies, and low in 3.6% (1/28) of included studies. All studies were low concern regarding the applicability of primary studies to the review question. CONCLUSION CT radiomics-based model is promising and encouraging in differentiating IAC from indolent lung adenocarcinomas, though they require methodological rigor. Well-designed studies are necessary to demonstrate their validity and standardization of methods and results can prompt their use in daily clinical practice.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xueqing Peng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunpeng Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China; School of Basic Medical Sciences, and Academy of Engineering and Technology, Fudan University, Shanghai, China.
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People's Hospital, Nantong, China.
| |
Collapse
|
13
|
Delli Pizzi A, Chiarelli AM, Chiacchiaretta P, Valdesi C, Croce P, Mastrodicasa D, Villani M, Trebeschi S, Serafini FL, Rosa C, Cocco G, Luberti R, Conte S, Mazzamurro L, Mereu M, Patea RL, Panara V, Marinari S, Vecchiet J, Caulo M. Radiomics-based machine learning differentiates "ground-glass" opacities due to COVID-19 from acute non-COVID-19 lung disease. Sci Rep 2021; 11:17237. [PMID: 34446812 PMCID: PMC8390673 DOI: 10.1038/s41598-021-96755-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Ground-glass opacities (GGOs) are a non-specific high-resolution computed tomography (HRCT) finding tipically observed in early Coronavirus disesase 19 (COVID-19) pneumonia. However, GGOs are also seen in other acute lung diseases, thus making challenging the differential diagnosis. To this aim, we investigated the performance of a radiomics-based machine learning method to discriminate GGOs due to COVID-19 from those due to other acute lung diseases. Two sets of patients were included: a first set of 28 patients (COVID) diagnosed with COVID-19 infection confirmed by real-time polymerase chain reaction (RT-PCR) between March and April 2020 having (a) baseline HRCT at hospital admission and (b) predominant GGOs pattern on HRCT; a second set of 30 patients (nCOVID) showing (a) predominant GGOs pattern on HRCT performed between August 2019 and April 2020 and (b) availability of final diagnosis. Two readers independently segmented GGOs on HRCTs using a semi-automated approach, and radiomics features were extracted using a standard open source software (PyRadiomics). Partial least square (PLS) regression was used as the multivariate machine-learning algorithm. A leave-one-out nested cross-validation was implemented. PLS β-weights of radiomics features, including the 5% features with the largest β-weights in magnitude (top 5%), were obtained. The diagnostic performance of the radiomics model was assessed through receiver operating characteristic (ROC) analysis. The Youden's test assessed sensitivity and specificity of the classification. A null hypothesis probability threshold of 5% was chosen (p < 0.05). The predictive model delivered an AUC of 0.868 (Youden's index = 0.68, sensitivity = 93%, specificity 75%, p = 4.2 × 10-7). Of the seven features included in the top 5% features, five were texture-related. A radiomics-based machine learning signature showed the potential to accurately differentiate GGOs due to COVID-19 pneumonia from those due to other acute lung diseases. Most of the discriminant radiomics features were texture-related. This approach may assist clinician to adopt the appropriate management early, while improving the triage of patients.
Collapse
Affiliation(s)
- Andrea Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Maria Chiarelli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Piero Chiacchiaretta
- Center of Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Psychological, Health and Territory Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Cristina Valdesi
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | | - Michela Villani
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Consuelo Rosa
- Department of Radiation Oncology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via Dei Vestini, 66100, Chieti, Italy
| | - Giulio Cocco
- Unit of Ultrasound in Internal Medicine, Department of Medicine and Science of Aging, "G. D'Annunzio" University, Chieti, Italy
| | - Riccardo Luberti
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Sabrina Conte
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Lucia Mazzamurro
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Manuela Mereu
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Rosa Lucia Patea
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Valentina Panara
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| | - Stefano Marinari
- Department of Pneumology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via Dei Vestini, 66100, Chieti, Italy
| | - Jacopo Vecchiet
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University 'G. d'Annunzio' Chieti-Pescara, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
- Department of Radiology, "Santissima Annunziata" Hospital, "G. d'Annunzio" University of Chieti, Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
14
|
Yoshida M, Yuasa M, Ogawa H, Miyamoto N, Kawakami Y, Kondo K, Tangoku A. Can computed tomography differentiate adenocarcinoma in situ from minimally invasive adenocarcinoma? Thorac Cancer 2021; 12:1023-1032. [PMID: 33599059 PMCID: PMC8017252 DOI: 10.1111/1759-7714.13838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Given the subtle pathological signs of adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA), effective differentiation between the two entities is crucial. However, it is difficult to predict these conditions using preoperative computed tomography (CT) imaging. In this study, we investigated whether histological diagnosis of AIS and MIA using quantitative three-dimensional CT imaging analysis could be predicted. METHODS We retrospectively analyzed the images and histopathological findings of patients with lung cancer who were diagnosed with AIS or MIA between January 2017 and June 2018. We used Synapse Vincent (v. 4.3) (Fujifilm) software to analyze the CT attenuation values and performed a histogram analysis. RESULTS There were 22 patients with AIS and 22 with MIA. The ground-glass nodule (GGN) rate was significantly higher in patients with AIS (p < 0.001), whereas the solid volume (p < 0.001) and solid rate (p = 0.001) were significantly higher in those with MIA. The mean (p = 0.002) and maximum (p = 0.025) CT values were significantly higher in patients with MIA. The 25th, 50th, 75th, and 97.5th percentiles (all p < 0.05) for the CT values were significantly higher in patients with MIA. CONCLUSIONS We demonstrated that quantitative analysis of 3D-CT imaging data using software can help distinguish AIS from MIA. These analyses are useful for guiding decision-making in the surgical management of early lung cancer, as well as subsequent follow-up.
Collapse
Affiliation(s)
- Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery, and Oncology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Masao Yuasa
- Department of Radiology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Disease Pathology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Naoki Miyamoto
- Department of Thoracic, Endocrine Surgery, and Oncology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery, and Oncology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuya Kondo
- Department of Thoracic, Endocrine Surgery, and Oncology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery, and Oncology, Institute of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
15
|
A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules. Clin Radiol 2020; 76:143-151. [PMID: 33187676 DOI: 10.1016/j.crad.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
AIM To establish a machine-learning model to differentiate adenocarcinoma in situ (AIS) or minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC) appearing as pure ground-glass nodules (pGGNs). MATERIALS AND METHODS This retrospective study enrolled 136 patients with histopathologically diagnosed with AIS, MIA, and IAC. All pGGNs were divided randomly into a training and a testing dataset at a ratio of 7 : 3. Radiomics features were extracted based on the unenhanced computed tomography (CT) images derived from the last preoperative CT examination of each patient. The F-test and least absolute shrinkage and selection operator (LASSO) logistic regression were applied to select the most valuable features to establish a support vector machine (SVM) model. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUROC), and the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance of radiologists and the SVM model. RESULTS Six significant radiomics features were selected to develop the SVM model and showed excellent ability to differentiate AIS/MIA from IAC in both the training dataset (AUROC=0.950, 95% confidence interval [CI]: 0.886-0.984) and the testing dataset (AUROC=0.945, 95% CI: 0.826-0.992). Compared with two radiologists, the proposed model possessed significant advantages with higher accuracy (90.24% versus 75.61% and 80.49%), sensitivity (91.67% versus 50% and 75%), and specificity (89.66% versus 86.21% and 82.76%). CONCLUSION A machine-learning model based on radiomics features exhibits superior diagnostic performance in differentiating AIS/MIA from IAC appearing as pGGNs.
Collapse
|
16
|
Li X, Ren F, Wang S, He Z, Song Z, Chen J, Xu S. The Epidemiology of Ground Glass Opacity Lung Adenocarcinoma: A Network-Based Cumulative Meta-Analysis. Front Oncol 2020; 10:1059. [PMID: 32793469 PMCID: PMC7386063 DOI: 10.3389/fonc.2020.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Due to the introduction of low-dose computed tomography (CT) and screening procedures, the proportion of early-stage lung cancer with ground glass opacity (GGO) manifestation is increasing in clinical practice. However, its epidemiological characteristics is still not fully investigated. Methods: We retrieved all solitary GGO adenocarcinoma lung cancer (ADLC) on the PubMed, Cochrane Library, and Embase databases until January 1, 2019 and extracted the general information to perform the meta-analysis, mainly focusing on age, gender, and smoking status. Results: A total of 8,793 solitary GGO ADLC patients from 53 studies were included in this analysis. The final pooled analysis showed that the female proportion, average diagnosis age, and non-smoking proportion of solitary GGO ADLC was 0.62 (95% CI, 0.60-0.64), 56.97 (95% CI, 54.56-59.37), and 0.72 (95% CI, 0.66-0.77), respectively. The cumulative meta-analysis and meta-trend analysis confirmed that the average age at diagnosis has been decreasing while the non-smoking proportion significantly increased in the past two decades. Conclusions: From our epidemiological analysis, it demonstrates that the clinical characteristics of GGO lung cancer patients may be out of the high-risk factors. Therefore, we propose to reconsider the risk assessment and current lung cancer screening criteria.
Collapse
Affiliation(s)
- Xiongfei Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuhang Wang
- Department of Clinical Trials Center, National Cancer Center, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Khawaja A, Bartholmai BJ, Rajagopalan S, Karwoski RA, Varghese C, Maldonado F, Peikert T. Do we need to see to believe?-radiomics for lung nodule classification and lung cancer risk stratification. J Thorac Dis 2020; 12:3303-3316. [PMID: 32642254 PMCID: PMC7330769 DOI: 10.21037/jtd.2020.03.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
Despite multiple recent advances, the diagnosis and management of lung cancer remain challenging and it continues to be the deadliest malignancy. In 2011, the National Lung Screening Trial (NLST) reported 20% reduction in lung cancer related mortality using annual low dose chest computed tomography (CT). These results led to the approval and nationwide establishment of lung cancer CT-based lung cancer screening programs. These findings have been further validated by the recently published Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) and Multicentric Italian Lung Detection (MILD) trials, the latter showing benefit of screening even beyond the 5 years. However, the implementation of lung cancer screening has been impeded by several challenges, including the differentiation between benign and malignant nodules, the large number of false positive studies and the detection of indolent, potentially clinically insignificant lung cancers (overdiagnosis). Hence, the development of non-invasive strategies to accurately classify and risk stratify screen-detected pulmonary nodules in order to individualize clinical management remains a high priority area of research. Radiomics is a recently coined term which refers to the process of imaging feature extraction and quantitative analysis of clinical diagnostic images to characterize the nodule phenotype beyond what is possible with conventional radiologist assessment. Even though it is still in early phase, several studies have already demonstrated that radiomics approaches are potentially useful for lung nodule classification, risk stratification, individualized management and prediction of overall prognosis. The goal of this review is to summarize the current literature regarding the radiomics of screen-detected lung nodules, highlight potential challenges and discuss its clinical application along with future goals and challenges.
Collapse
Affiliation(s)
- Ali Khawaja
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Cyril Varghese
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fabien Maldonado
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA
| | - Tobias Peikert
- Divison of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Ye J, Ling J, Lv Y, Chen J, Cai J, Chen M. Pulmonary adenocarcinoma appearing as ground-glass opacity nodules identified using non-enhanced and contrast-enhanced CT texture analysis: A retrospective analysis. Exp Ther Med 2020; 19:2483-2490. [PMID: 32256725 PMCID: PMC7086215 DOI: 10.3892/etm.2020.8511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the ability of CT-based texture analysis to differentiate invasive adenocarcinoma (IA) from pre-invasive lesions (PIL) or minimally IA (MIA) appearing as ground-glass opacity (GGO) nodules, and to further compare the performance of non-enhanced CT (NECT) images with that of contrast-enhanced CT (CECT) images. A total of 77 patients with GGO nodules and surgically confirmed pulmonary adenocarcinoma were included in the present retrospective study. Each GGO nodule was manually segmented and its texture features were extracted from NECT and CECT images using in-house developed software coded in MATLAB (MathWorks). The independent-samples t-test was used to select the texture features with statistically significant differences between IA and MIA/PIL. Multivariate logistic regression and receiver operating characteristics (ROC) curve analyses were performed to identify predictive features. Of the 77 GGO nodules, 12 were atypical adenomatous hyperplasia or adenocarcinoma in situ (15.6%), 36 were MIA (46.8%) and 29 were IA (37.7%). IA and MIA/PIL exhibited significant differences in most histogram features and gray-level co-occurrence matrix features (P<0.05). Multivariate logistic regression and ROC curve analyses revealed that smaller energy and higher entropy were significant differentiators of IA from MIA and PIL, irrespective of whether NECT images [area under the curve (AUC): 0.839, 0.859] or CECT images (AUC: 0.818, 0.820) are used. Texture analysis of CT images, regardless of whether NECT or CECT is used, has the potential to distinguish IA from PIL or MIA, particularly the parameters of energy and entropy. Furthermore, NECT images were simpler to obtain and no contrast agent was required; thus, analysis with NECT may be a preferred choice.
Collapse
Affiliation(s)
- Jing Ye
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| | - Jun Ling
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| | - Yan Lv
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| | - Juan Chen
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| | - Junhui Cai
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| | - Mingxiang Chen
- Department of Medical Imaging, Yangzhou University Clinical College Subei People's Hospital, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
19
|
Differences in lung cancer characteristics and mortality rate between screened and non-screened cohorts. Sci Rep 2019; 9:19386. [PMID: 31852960 PMCID: PMC6920422 DOI: 10.1038/s41598-019-56025-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Screening programs for lung cancer aim to allow diagnosis at the early stage, and therefore the decline in mortality rates. Thus, the aim of this retrospective cohort study was to the comparison of screened and non-screened lung cancer in terms of lung cancer characteristics, overdiagnosis and survival rate. A retrospective study in which 2883 patients with 2883 lung cancer diagnosed according to the hospital-based lung cancer register database between 2007 and 2017. A comparison was performed in term of clinical characteristics and outcomes of lung cancer between the screened and non-screening patient groups. 2883 subjects were identified (93 screened and 2790 non-screened). Screened group patients were younger (59.91 ± 8.14 versus 67.58 ± 12.95; p < 0.0001), and were more likely to be female than non-screened group (61.3% versus 36.8%; p < 0.0001). The screened group showed significantly better outcomes in overall mortality than the non-screened group (10.75% versus 79.06%; <0.0001). In a Cox proportional hazard model, lung cancer in the screened group proved to be an independent prognostic factor in lung cancer subjects. Our findings point to the improved survival outcome in the screened group and might underline the benefit of low-dose computed tomography (LDCT) screening program in Asian populations with the high prevalence of non-smoking-related lung cancer. Further study aimed at the LDCT mass screening program targeting at light smokers and non-smoker outside of existing screening criteria is warranted.
Collapse
|
20
|
Chen PH, Chang KM, Tseng WC, Chen CH, Chao JI. Invasiveness and surgical timing evaluation by clinical features of ground-glass opacity nodules in lung cancers. Thorac Cancer 2019; 10:2133-2141. [PMID: 31571421 PMCID: PMC6825908 DOI: 10.1111/1759-7714.13199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background The early stages of lung cancer with ground‐glass opacity (GGO) pattern are detectable. However, it remains a challenge for physicians how best to treat GGO nodules as invasive tumors are occasionally found, even in pure GGO nodules. This study identified the invasiveness by the clinical features of the GGO nodules. Methods A retrospective review of patients with resected GGO nodules from August 2015 to February 2019 was performed. A total of 92 patients were enrolled and gender, age, tumor location, operation times, tumor size, histopathologic and radiological findings were analyzed. Results In this study, the sequential of GGO nodules invasiveness was significantly related to the tumor size and solid component. After regrouping the population into preinvasive and invasive groups, the invasiveness was significantly related to tumor size, solid component, tumor volume and maximal computed tomography (CT) value. Conclusions The invasiveness is difficult to evaluate according to the CT features only when the GGO nodules are less than 2 cm and consolidation/tumor ratio (C/T ratio) are less than 0.25. Tumor size and solid component are significant factors for predicting invasiveness. Part‐solid GGO nodules with a diameter greater than 1 cm require surgical consideration due to their high risk of invasiveness.
Collapse
Affiliation(s)
- Pai-Hsi Chen
- Department of Surgery, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.,Department and Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuo-Ming Chang
- Department of Pathology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Wei-Chi Tseng
- Department of Radiology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Chien-Hung Chen
- Department and Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jui-I Chao
- Department and Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Yang B, Ji H, Ge Y, Chen S, Zhu H, Lu G. Correlation Study of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Pathological Subtypes of Invasive Lung Adenocarcinoma and Prognosis. Front Oncol 2019; 9:908. [PMID: 31620365 PMCID: PMC6759513 DOI: 10.3389/fonc.2019.00908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: To investigate the correlation between 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic parameters and clinicopathological factors in pathological subtypes of invasive lung adenocarcinoma and prognosis. Patients and Methods: Metabolic parameters and clinicopathological factors from 176 consecutive patients with invasive lung adenocarcinoma between August 2008 and August 2016 who underwent 18F-FDG PET/CT examination were retrospectively analyzed. Invasive lung adenocarcinoma was divided into five pathological subtypes:lepidic predominant adenocarcinoma (LPA), acinar predominant adenocarcinoma (APA), papillary predominant adenocarcinoma (PPA), solid predominant adenocarcinoma (SPA), and micropapillary predominant adenocarcinoma (MPA). The differences in metabolic parameters [maximal standard uptake value (SUVmax), mean standard uptake value (SUVmean), total lesion glycolysis (TLG), and metabolic tumor volume (MTV)] and tumor diameter for different pathological subtypes were analyzed. Patients were divided into two groups according to their prognosis: good prognosis group (LPA, APA, PPA) and poor prognosis group (SPA, MPA). Logistic regression was used to filter predictors and construct a predictive model, and areas under the receiver operating curve (AUC) were calculated. Cox regression analysis was performed on prognostic factors. Results: 82 (46.6%) females and 94 (53.4%) males of patients with invasive lung adenocarcinoma were enrolled in this study. Metabolic parameters and tumor diameter of different pathological subtype had statistically significant (P < 0.05). The predictive model constructed using independent predictors (Distant metastasis, Ki-67, and SUVmax) had good classification performance for both groups. The AUC for SUVmax was 0.694 and combined with clinicopathological factors were 0.745. Cox regression analysis revealed that Stage, TTF-1, MTV, and pathological subtype were independent risk factors for patient prognosis. The hazard ratio (HR) of the poor prognosis group was 1.948 (95% CI 1.042–3.641) times the good prognosis group. The mean survival times of good and poor prognosis group were 50.2621 (95% CI 47.818–52.706) and 35.8214 (95% CI 27.483–44.159) months, respectively, while the median survival time was 47.00 (95% CI 45.000–50.000) and 31.50 (95% CI 23.000–49.000) months, respectively. Conclusion: PET/CT metabolic parameters combined with clinicopathological factors had good classification performance for the different pathological subtypes, which may provide a reference for treatment strategies and prognosis evaluation of patients.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hengshan Ji
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Sui Chen
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Zhu
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Weng Q, Zhou L, Wang H, Hui J, Chen M, Pang P, Zheng L, Xu M, Wang Z, Ji J. A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules. Clin Radiol 2019; 74:933-943. [PMID: 31521324 DOI: 10.1016/j.crad.2019.07.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
AIM A nomogram model was developed to predict the histological subtypes of lung invasive adenocarcinomas (IAs) and minimally invasive adenocarcinomas (MIAs) that manifest as part-solid ground-glass nodules (GGNs). MATERIALS AND METHODS This retrospective study enrolled 119 patients with histopathologically confirmed part-solid GGNs assigned to the training (n=83) or testing cohorts (n=36). Radiomic features were extracted based on the unenhanced computed tomography (CT) images. R software was applied to process the qualitative and quantitative data. The CT features model, radiomic signature model, and combined prediction model were constructed and compared. RESULTS A total of 396 radiomic features were extracted from the preoperative CT images, four features including MaxIntensity, RMS, ZonePercentage, and LongRunEmphasis_angle0_offset7 were indicated to be the best discriminators to establish the radiomic signature model. The performance of the model was satisfactory in both the training and testing set with areas under the curve (AUCs) of 0.854 (95% confidence interval [CI]: 0.774 to 0.934) and 0.813 (95% CI: 0.670 to 0.955), respectively. The CT morphology of the lesion shape and diameter of the solid component were confirmed to be a significant feature for building the CT features model, which had an AUC of 0.755 (95% CI: 0.648 to 0.843). A nomogram that integrated lesion shape and radiomic signature was constructed, which contributed an AUC of 0.888 (95% CI: 0.82 to 0.955). CONCLUSIONS The radiomic signature could provide an important reference for differentiating IAs from MIAs, and could be significantly enhanced by the addition of CT morphology. The nomogram may be highly informative for making clinical decisions.
Collapse
Affiliation(s)
- Q Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - L Zhou
- Department of Radiology, Lishui People's Hospital, Lishui, 323000, China
| | - H Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - J Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - M Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - P Pang
- GE Healthcare, Hangzhou 310000, China
| | - L Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - M Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Z Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - J Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
23
|
Yang B, Guo L, Lu G, Shan W, Duan L, Duan S. Radiomic signature: a non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma. Cancer Manag Res 2019; 11:7825-7834. [PMID: 31695487 PMCID: PMC6707437 DOI: 10.2147/cmar.s217887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose We aimed to assess the classification performance of a computed tomography (CT)-based radiomic signature for discriminating invasive and non-invasive lung adenocarcinoma. Patients and Methods A total of 192 patients (training cohort, n=116; validation cohort, n=76) with pathologically confirmed lung adenocarcinoma were retrospectively enrolled in the present study. Radiomic features were extracted from preoperative unenhanced chest CT images to build a radiomic signature. Predictive performance of the radiomic signature were evaluated using an intra-cross validation cohort. Diagnostic performance of the radiomic signature was assessed via receiver operating characteristic (ROC) analysis. Results The radiomic signature consisted of 14 selected features and demonstrated good discrimination performance between invasive and non-invasive adenocarcinoma. The area under the ROC curve (AUC) for the training cohort was 0.83 (sensitivity, 0.84 ; specificity, 0.78; accuracy, 0.82), while that for the validation cohort was 0.77 (sensitivity, 0.94; specificity, 0.52 ; accuracy, 0.82). Conclusion The CT-based radiomic signature exhibited good classification performance for discriminating invasive and non-invasive lung adenocarcinoma, and may represent a valuable biomarker for determining therapeutic strategies in this patient population.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, People's Republic of China
| | - Lili Guo
- Department of Radiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, People's Republic of China
| | - Wenli Shan
- Department of Radiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Lizhen Duan
- Department of Radiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Shaofeng Duan
- GE Healthcare China, Shanghai 210000, People's Republic of China
| |
Collapse
|
24
|
Lee JH, Kim TH, Lee S, Han K, Byun MK, Chang YS, Kim HJ, Lee GD, Park CH. High versus low attenuation thresholds to determine the solid component of ground-glass opacity nodules. PLoS One 2018; 13:e0205490. [PMID: 30335856 PMCID: PMC6193644 DOI: 10.1371/journal.pone.0205490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives To evaluate and compare the diagnostic accuracy of high versus low attenuation thresholds for determining the solid component of ground-glass opacity nodules (GGNs) for the differential diagnosis of adenocarcinoma in situ (AIS) from minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA). Methods Eighty-six pathologically confirmed GGNs < 3 cm observed in 86 patients (27 male, 59 female; mean age, 59.3 ± 11.0 years) between January 2013 and December 2015 were retrospectively included. The solid component of each GGN was defined using two different attenuation thresholds: high (-160 Hounsfield units [HU]) and low (-400 HU). According to the presence or absence of solid portions, each GGN was categorized as a pure GGN or part-solid GGN. Solid components were regarded as indicators of invasive foci, suggesting MIA or IA. Results Among the 86 GGNs, there were 57 cases of IA, 19 of MIA, and 10 of AIS. Using the high attenuation threshold, 44 were categorized as pure GGNs and 42 as part-solid GGNs. Using the low attenuation threshold, 13 were categorized as pure GGNs and 73 as part-solid GGNs. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for the invasive focus were 55.2%, 100%, 100%, 22.7%, and 60.4%, respectively, for the high attenuation threshold, and 93.4%, 80%, 97.2%, 61.5%, and 91.8%, respectively, for the low attenuation threshold. Conclusion The low attenuation threshold was better than the conventional high attenuation threshold for determining the solid components of GGNs, which indicate invasive foci.
Collapse
Affiliation(s)
- Jae Ho Lee
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University college of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University college of Medicine, Seoul, Republic of Korea
| | - Sungsoo Lee
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University college of Medicine, Seoul, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kwang Byun
- Division of Pulmonology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Division of Pulmonology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jung Kim
- Division of Pulmonology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University college of Medicine, Seoul, Republic of Korea
- * E-mail: (GDL); (CHP)
| | - Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University college of Medicine, Seoul, Republic of Korea
- * E-mail: (GDL); (CHP)
| |
Collapse
|