1
|
Zhang S, Zhang S, Xia B, Li X, Jiang H, Feng S, Xiang Y, Qiu Y, Zhou S, Luo P. PRMT1-mediated methylation of ME2 promotes hepatocellular carcinoma growth by inhibiting ubiquitination. Cell Death Dis 2024; 15:814. [PMID: 39528487 PMCID: PMC11555414 DOI: 10.1038/s41419-024-07219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The mitochondrial malic enzyme 2 (ME2), which is frequently elevated during carcinogenesis and may be a target for cancer therapy, catalyzes the conversion of malate to pyruvate. The processes controlling ME2 activity, however, remain largely unclear. In this work, we show that human hepatocellular carcinoma (HCC) tissues contain high levels of ME2 and that the methylation of ME2 stimulates the growth and migration of HCC cells. Furthermore, we observed that ME2 interacts with protein arginine methyltransferase 1 (PRMT1) and that ME2 enzymatic activity is activated by mutation of ME2 at lysine 67. Mitochondrial respiration was markedly increased by activated ME2, which promoted cell division and carcinogenesis. Furthermore, a negative prognosis for patients was strongly linked with the expression levels of PRMT1 and ME2 R67K in HCC tissues. These findings imply that hepatocellular carcinoma growth is aided by PRMT1-mediated ME2 methylation, that is an essential signaling event that cancer cells need to continue mitochondrial respiration.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Shuling Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Baijuan Xia
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Xueying Li
- Department of Radiology, Guiyang Public Health Clinical Center, No.6 Daying Road, Yunyan District, 550001, Guiyang, Guizhou, P.R. China
| | - Hongyu Jiang
- Department of Cancer Research Laboratory, The Affiliated Cancer Hospital of Guizhou Medical University, 550000, Guiyang, Guizhou, P.R. China
| | - Su Feng
- Department of Cancer Research Laboratory, The Affiliated Cancer Hospital of Guizhou Medical University, 550000, Guiyang, Guizhou, P.R. China
| | - Yang Xiang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Ya Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China.
| | - Peng Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
2
|
Zhang Z, Yang Y, Chen Y, Su J, Du W. Malic enzyme 2 maintains metabolic state and anti-tumor immunity of CD8 + T cells. Mol Cell 2024; 84:3354-3370.e7. [PMID: 39151423 DOI: 10.1016/j.molcel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.
Collapse
Affiliation(s)
- Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanting Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jingyu Su
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
3
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
4
|
Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol 2024; 15:1421905. [PMID: 39027328 PMCID: PMC11254633 DOI: 10.3389/fphar.2024.1421905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer, due to resistance to standard therapies such as endocrine therapy, anti-HER2 therapy and chemotherapy, continues to pose a major health challenge. A growing body of research emphasizes the heterogeneity and plasticity of metabolism in breast cancer. Because differences in subtypes exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors shows great potential as stand-alone or adjuvant cancer therapies. Multiple therapeutic candidates are currently in various stages of preclinical studies and clinical openings. However, specific inhibitors have been shown to face multiple challenges (e.g., single metabolic therapies, mitochondrial structure and enzymes, etc.), and combining with standard therapies or targeting multiple metabolic pathways may be necessary. In this paper, we review the critical role of mitochondrial metabolic functions, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acid metabolism, in metabolic reprogramming of breast cancer cells. In addition, we outline the impact of mitochondrial dysfunction on metabolic pathways in different subtypes of breast cancer and mitochondrial inhibitors targeting different metabolic pathways, aiming to provide additional ideas for the development of mitochondrial inhibitors and to improve the efficacy of existing therapies for breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Tang
- Paediatrics Department, Southwest Medical University, Luzhou, China
| | - Xiaoyan Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Gao K, Huang Z, Yu W, Wu Y, Liu W, Sun S, Zhang Y, Chen D. Therapeutic mechanisms of modified Jiawei Juanbi decoction in early knee osteoarthritis: A multimodal analysis. Heliyon 2024; 10:e30828. [PMID: 38770333 PMCID: PMC11103480 DOI: 10.1016/j.heliyon.2024.e30828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Modified Jiawei Juanbi decoction (MJD) is used for the treatment of early-stage knee osteoarthritis (KOA). Here, modified Jiawei Juanbi decoction (MJD) was employed for the treatment of early-stage knee osteoarthritis (KOA) and its mechanisms were assessed via metabonomics and network pharmacology. A total of 24 male Sprague-Dawley rats were randomly allocated into a normal control group, a model group, and an MJD group (n = 8 rats per group). Each rat group was further equally divided into two subgroups for investigation for either 14 or 28 days. A rat model of early-stage KOA was constructed and rats were treated with MJD. Effects were evaluated based on changes in knee circumference, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). We also analyzed histopathological changes in articular cartilage. High-resolution mass spectrometry was used to analyze the chemical profile of MJD, identifying 228 components. Using an LC-Q-TOF-MS metabonomics approach, 33 differential metabolites were identified. The relevant pathways significantly associated with MJD include arginine and proline metabolism, vitamin B6 metabolism, as well as the biosynthesis of phenylalanine, tyrosine and tryptophan. The system pharmacology paradigm revealed that MJD contains 1027 components and associates with 1637 genes, of which 862 disease genes are related to osteoarthritis. The construction of the MJD composition-target-KOA network revealed a total of 140 intersection genes. A total of 39 hub genes were identified via integration of betweenness centrality values greater than 100 using CytoHubba. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed several significantly affected signaling pathways including the HIF-1, AGE-RAGE (in diabetic complications), IL-17, rheumatoid arthritis and TNF pathways. Integrated-omics and network pharmacology approaches revealed a necessity for further detailed investigation focusing on two major targets, namely NOS2 and NOS3, along with their essential metabolite (arginine) and associated pathways (HIF-1 signaling and arginine and proline metabolism). Real-time PCR validated significantly greater downregulation of NOS2 and HIF-1ɑ in the MJD as compared to the model group. Molecular docking analysis further confirmed the binding of active MJD with key active components. Our findings elucidate the impact of MJD on relevant pathophysiological and metabolic networks relevant to KOA and assess the drug efficacy of MJD and its underlying mechanisms of action.
Collapse
Affiliation(s)
- Kun Gao
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Zhenyu Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiji Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yihong Wu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Weidong Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shufen Sun
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yong Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Dayu Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| |
Collapse
|
6
|
Afzal AR, Jeon J, Jung CH. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli. Biochem Biophys Res Commun 2023; 678:144-147. [PMID: 37634412 DOI: 10.1016/j.bbrc.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
NAD-dependent malic enzymes catalyze NAD reduction to NADH while converting malate to pyruvate and CO2. In this study, NAD was reduced to NADH by MaeA, NAD-dependent malic enzyme from Escherichia coli, when fumarate was used as substrate. This suggested that MaeA catalyzed the conversion of fumarate to malate and then malate to pyruvate. The K0.5 value for fumarate was determined as 13 mM, different from previously characterized fumarases in Escherichia coli. Fumarate inhibited the malic enzyme activity of MaeA where NAD reduction to NADH was examined in the presence of malate as substrate. Human ME2, an NAD-dependent malic enzyme, also converted NAD to NADH in the presence of fumarate, suggesting that the duplex activity as fumarase and malic enzyme might be conserved in various NAD-dependent malic enzymes. MaeB, NADP-dependent malic enzyme from Escherichia coli, did not reduce NADP to NADPH in the presence of fumarate, suggesting the fumarase activities of MaeA and ME2 were specific.
Collapse
Affiliation(s)
- Aqeel Rana Afzal
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Jinyoung Jeon
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea
| | - Che-Hun Jung
- Department of Medical Science, Chonam National University, Gwangju, 61186, South Korea; Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
7
|
Hsieh JY, Chen KC, Wang CH, Liu GY, Ye JA, Chou YT, Lin YC, Lyu CJ, Chang RY, Liu YL, Li YH, Lee MR, Ho MC, Hung HC. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol 2023; 6:548. [PMID: 37217557 DOI: 10.1038/s42003-023-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Kun-Chi Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC
| | - Guang-Yaw Liu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Jie-An Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Yu-Tung Chou
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Chun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Cheng-Jhe Lyu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Rui-Ying Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yen-Hsien Li
- Instrument Center, Office of Research and Development, National Chung Hsing University, Taichung, 40227, Taiwan ROC
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Mau-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan ROC.
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan ROC.
| |
Collapse
|
8
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
10
|
Greer YE, Hernandez L, Fennell EMJ, Kundu M, Voeller D, Chari R, Gilbert SF, Gilbert TSK, Ratnayake S, Tang B, Hafner M, Chen Q, Meerzaman D, Iwanowicz E, Annunziata CM, Graves LM, Lipkowitz S. Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1144-1161. [PMID: 36388465 PMCID: PMC9645232 DOI: 10.1158/2767-9764.crc-22-0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer cell proliferation and CSC function in vitro and in vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H, induce redox imbalance, dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function. Significance ClpP agonists disrupt mitochondrial homeostasis by activating mitochondrial matrix protease ClpP. We report that ClpP agonists inhibit cell growth and cancer stem cell functions in breast cancer models by modulating multiple metabolic pathways essential to cancer stem cell function.
Collapse
Affiliation(s)
| | | | - Emily M. J. Fennell
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | | | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shashikala Ratnayake
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, NCI, NIH
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | | | | | - Lee M. Graves
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | |
Collapse
|
11
|
The Role of Hypoxia-Inducible Factor Isoforms in Breast Cancer and Perspectives on Their Inhibition in Therapy. Cancers (Basel) 2022; 14:cancers14184518. [PMID: 36139678 PMCID: PMC9496909 DOI: 10.3390/cancers14184518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In many types of cancers, the activity of the hypoxia-inducible factors enhances hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. As a result of observing these features, HIFs became attractive targets in designing anticancer therapy. The lack of effective breast treatment based on HIFs inhibitors and the elusive role of those factors in this type of cancer raises the concern wheter targeting hypoxia-inducible factors is the right path. Results of the study on breast cancer cell lines suggest the need to consider aspects like HIF-1α versus HIF-2α isoforms inhibition, double versus singular isoform inhibition, different hormone receptors status, metastases, and perhaps different not yet investigated issues. In other words, targeting hypoxia-inducible factors in breast cancers should be preceded by a better understanding of their role in this type of cancer. The aim of this paper is to review the role, functions, and perspectives on hypoxia-inducible factors inhibition in breast cancer. Abstract Hypoxia is a common feature associated with many types of cancer. The activity of the hypoxia-inducible factors (HIFs), the critical element of response and adaptation to hypoxia, enhances cancer hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. The HIF-1α and HIF-2α isoforms show similar regulation characteristics, although they are active in different types of hypoxia and can show different or even opposite effects. Breast cancers present several unique ways of non-canonical hypoxia-inducible factors activity induction, not limited to the hypoxia itself. This review summarizes different effects of HIFs activation in breast cancer, where areas such as metabolism, evasion of the immune response, cell survival and death, angiogenesis, invasion, metastasis, cancer stem cells, and hormone receptors status have been covered. The differences between HIF-1α and HIF-2α activity and their impacts are given special attention. The paper also discusses perspectives on using hypoxia-inducible factors as targets in anticancer therapy, given current knowledge acquired in molecular studies.
Collapse
|