1
|
Chen X, Wen J, Shan X, Wang W, Chen Z. Supersensitive detection of lincomycin with an ECL aptasensor based on the synergistic integration of gold-functionalized upconversion nanoparticles and thiolated 3,4,9,10-perylene tetracarboxylic acid. Analyst 2024; 149:1746-1752. [PMID: 38349197 DOI: 10.1039/d3an02169f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this work, the supersensitive and selective determination of lincomycin (Lin) was achieved using a novel electroluminescent (ECL) aptasensor based on the synergistic integration of gold functionalized upconversion nanoparticles (UCNPs) and thiolated 3,4,9,10-perylene tetracarboxylic acid (PTCA). The integration of two luminophores of UCNPs and PTCA combined the merits of the cathodoluminescence stability of UCNPs and the high quantum yield of PTCA, which significantly promoted the ECL signal and analytical performance of the proposed sensor. The introduction of gold nanoparticles in UCNPs can not only improve the conductivity and ECL performance of UCNPs but also cause them to easily integrate with thiolated PTCA (t-PTCA) via an Au-S bond. The ECL signal of UCNPs@Au/t-PTCA/GCE was almost twice as strong as that of t-PTCA/GCE and tenfold higher than that of UCNPs@Au/GCE. Because of the non-conductive protein of the Lin aptamer, the ECL intensity of apt/UCNPs@Au/t-PTCA/GCE noticeably decreased. In the presence of Lin, the aptamer was pulled down from the sensing interface, resulting in the recovery of the ECL intensity of the sensor. Under optimal conditions, our proposed sensor can quantify the concentration of Lin in the range from 1.0 × 10-15 to 1.0 × 10-7 M with a low detection limit of 2.4 × 10-16 M (S/N = 3), exhibiting high sensitivity and specificity for the determination of Lin.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Jing Wen
- School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China.
| | - Xueling Shan
- School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenchang Wang
- School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhidong Chen
- School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Li T, Dong Y, Su Y, Li Y, Wang J, Hu J, Li J. Facile preparation of low temperature carbon dots with long-wavelength emission and their sensing applications for crystal violet. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123863. [PMID: 38241934 DOI: 10.1016/j.saa.2024.123863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Crystal violet (CV) is one of the main components of common fungicides in daily life, which has inhibitory effect on gram-positive bacteria. However, CV remains in the environment for a long time and have potential risk of disease. Therefore, it is necessary to develop effective methods for detecting CV. Low-temperature carbon dots (LT-CDs) are studied to provide a new idea for the development of CDs green preparation technology from the perspective of low energy consumption. In this experiment, LT-CDs with long-wavelength emission were prepared based on the oxidation, cross-linking polymerization and Schiff base reaction using o-phenylenediamine and hydroquinone as carbon source at low temperature, and were characterized by various techniques. It was found that LT-CDs could be used as a fluorescent probe for quantitative detection of CV based on the inner filter effect, and the practicability of the method was verified by real samples.
Collapse
Affiliation(s)
- Tianze Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| | - Yuanyuan Dong
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| | - Yewenqing Su
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Yang Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jiaming Wang
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jing Hu
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jialin Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
3
|
Chen X, Sun Y, Wang W, Chen Z, Ming Z. Selective determination of cuprous ion in copper dissolving solution based on bathocuproine-modified expanded graphite electrode. ANAL SCI 2023; 39:1465-1473. [PMID: 37280484 DOI: 10.1007/s44211-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023]
Abstract
The presence of cuprous ions in the copper-dissolving solution significantly affects the microstructure of copper plated surface. Fewer quantitative analyses of cuprous ions in the copper foil productive process had rarely been involved so far. In the present work, a novel electrochemical sensor of the bathocuproine (BCP) modified expanded graphite (EG) electrode was developed for the selective determination of cuprous ions. EG has a large surface area, good adsorption, and excellent electrochemical performance which remarkably promoted analytical sensitivity. Meanwhile, the selective determination of the BCP-EG electrode for cuprous ions in the coexistence of ten thousand times of copper ions have been achieved on the benefit of the special coordination of BCP to cuprous ions. In the coexistence of 50 g/L copper ions, the analytical performance of the BCP-EG electrode for the determination of cuprous ions had been examined. The results represented a wide detection range of cuprous ions in the range of 1.0 μg/L-5.0 mg/L, with a low detection limit of 0.18 μg/L (S/N = 3) and the BCP-EG electrode has great selectivity to cuprous ions in presence of various interferences. The analytical selectively for cuprous ions supported by the proposed electrode would be a potential analytical tool for quality improvement in electrolytic copper foil manufacturing.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, 213032, People's Republic of China
| | - Yufa Sun
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenchang Wang
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhidong Chen
- School of Petrochemical and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zhiyao Ming
- Jiangsu Mingfeng Electronic Material Technology Co., Ltd., Changzhou, 213341, People's Republic of China
| |
Collapse
|
4
|
Zheng C, Chen J, Zhang Y, Zhou S, Wang L, Zhou J, Chen X, Yang D, Hong Y. Sandwich-type electrochemical immunosensing of hypopharyngeal carcinoma biomarker carcinoembryonic antigen based on N-doped hollow mesoporous nanocarbon spheres/gold hybrids as sensing platform and gold/ferrocene as signal amplifier. ANAL SCI 2023; 39:5-11. [PMID: 36596957 DOI: 10.1007/s44211-022-00223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
In the present work, a highly sensitive sandwich-type electrochemical immunosensor of carcinoembryonic antigen (CEA) was developed by preparing N-doped hollow mesoporous nanocarbon spheres/gold hybrids (NHMN/Au) hybridsas sensing platformand Au/ferrocene (Au/Fc) as signal amplifiers. The large surface area and high conductivity as well as good biocompatibility of NHMN/Au can increase the loading of primary antibody (Ab1) and accelerate the electron transport rate of the electrode surface, while Au can carry immobilized secondary antibodies (Ab2) and Fc derivative (Fc-SH).By using Fc-SH as response probe, the experiments show that the peak current of probe could increase after occurring the specific recognition of Ab1-CEA-Ab2, thus a novel sandwich-type immunosensor of CEA was developed. Finally, the proposed method for CEA detection was applied in human serum and the obtained results are satisfactory, indicating the developed method has important clinical applications for CEA determination.
Collapse
Affiliation(s)
- Chaohui Zheng
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jing Chen
- Department of Pharmacology, College of Pharmacy, Quanzhou Medical College, Quanzhou, 362010, China
| | - Yizheng Zhang
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Shuang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lixing Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jiao Zhou
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiaofang Chen
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Fujian Province, Quanzhou, 362002, China
| | - Yuming Hong
- Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
5
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|
6
|
A sandwich-configuration electrochemiluminescence immunoassay based on Cu 2O@OMC-Ru nanocrystals and OMC-MoS 2 nanocomposites for determination of alpha-fetoprotein. Mikrochim Acta 2021; 188:213. [PMID: 34052919 DOI: 10.1007/s00604-021-04848-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
A sandwich-format electrochemiluminescence (ECL) immunosensor has been developed for alpha-fetoprotein (AFP) detection based on the use of ordered mesoporous carbon-molybdenum disulfide (OMC-MoS2) as a sensor platform and cuprous oxide @ ordered mesoporous carbon-Ru(bpy)32+ (Cu2O@OMC-Ru) composites as signal tags. OMC alongside MoS2 plays a synergistic role in improving the electrochemical performance of the electrode in the electron transfer process. The uniform cubic-shaped Cu2O@OMC-Ru nanocrystals display excellent luminous efficiency, with a signal amplification strategy of OMC-MoS2 synergistic enhancement and Cu2O@OMC which is capable of immobilizing more Ru(bpy)32+ serving as a tracing tag to label antibodies. A detectable ECL emission at a Cu2O@OMC-Ru nanocrystals modified electrode is initiated at an applied voltage of +1.15 V (scanning range: 0-1.2 V), in the presence of the tripropylamine (TPA) as coreactant. With the increase in AFP concentration, the loading of Cu2O@OMC-Ru at the electrode increases. Afterward, the ECL detection of AFP shows a wide linear range from 0.1 pg/mL to 10 ng/mL with a correlation coefficient of 0.9964 and a detection limit of 0.011 pg/mL (S/N = 3) under the optimal experimental conditions. The recoveries were in the range 91.2-97.1% with RSD varying from 4.8 to 8.5%. Overall, the novel immunosensor has been successfully applied to the analysis of human serum samples, indicating a great potential for application in clinical diagnostics.
Collapse
|
7
|
Affiliation(s)
- Akira Kotani
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|