1
|
Li F, Hou L, Liu W, Jin Y, Lu J, Li B. Carbon Vacancy-Enhanced Activity of Fe-N-C Single Atom Catalysts toward Luminol Chemiluminescence in the Absence of H 2O 2. Anal Chem 2023; 95:16021-16028. [PMID: 37843973 DOI: 10.1021/acs.analchem.3c03972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The classic luminol-H2O2 chemiluminescence (CL) systems suffer from easy self-decomposition of H2O2 at room temperature, hindering the practical applications of the luminol-H2O2 CL system. In this work, unexpectedly, we found that the carbon vacancy-modified Fe-N-C single atom catalysts (VC-Fe-N-C SACs) can directly trigger a luminol solution to generate strong CL emission in the absence of H2O2. The Fe-based SACs were prepared through the conventional pyrolysis of zeolitic imidazolate frameworks. The massive carbon vacancies were readily introduced into Fe-N-C SACs through a tannic acid-etching process. Carbon vacancy significantly enhanced the catalytic activity of Fe-N-C SACs on the CL reaction of luminol-dissolved oxygen. The VC-Fe-N-C SACs performed a 13.4-fold CL enhancement compared with the classic luminol-Fe2+ system. It was found that the introduction of a carbon vacancy could efficiently promote dissolved oxygen to convert to reactive oxygen species. As a proof of concept, the developed CL system was applied to detect alkaline phosphatase with a linear range of 0.005-1 U/L as well as a detection limit of 0.003 U/L. This work demonstrated that VC-Fe-N-C SAC is a highly efficient CL catalyst that can promote the analytic application of the luminol CL system.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Hou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jiangbo Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
2
|
Dong S, Wang D, Gao X, Fu L, Jia J, Xu Y, Zhang B, Zou G. Glow and Flash Adjustable Chemiluminescence with Tunable Waveband from the Same CuInS 2@ZnS Nanocrystal Luminophore. Anal Chem 2022; 94:6902-6908. [PMID: 35486816 DOI: 10.1021/acs.analchem.2c01083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All commercial chemiluminescence (CL) assays are conducted with either glow or flash CL of eye-visible waveband from chemical luminophores. Herein, glow and flash, as well as waveband adjustable CL from the same nanoparticle luminophore of thiol-capped CuInS2@ZnS nanocrystals (CIS@ZnS-Thiol), are proposed via extensively exploiting the differed redox nature of CL triggering reagents. Taking thiosalicylic acid (TSA) as the model thiol-capping agent, the electron-injection-initiated charge transfer between CIS@ZnS-TSA and reductant can bring out efficient glow CL while the hole-injection-initiated charge transfer between CIS@ZnS-TSA and oxidant can give off obvious flash CL under optimum conditions. The maximum emission wavelength for CL of CIS@ZnS-TSA is adjustable from 730 nm to 823 nm via employing different triggering agents. Promisingly, the coexistent reductant of N2H4·H2O and oxidant of H2O2 can be employed as dual triggering reagents to trigger eye-visible and highly efficient flash CL from CIS@ZnS-TSA. The maximum emission intensity for flash CL of CIS@ZnS-TSA/N2H4-H2O2 is 101-fold greater than the glow CL of CIS@ZnS-TSA/N2H4 and 22-fold greater than the flash CL of CIS@ZnS-TSA/H2O2, respectively. The flash CL from CIS@ZnS-TSA/N2H4-H2O2 is qualified for highly sensitive and selective CL immunoassay in a commercialized typical procedure with the entire operating process manually terminated within 35 min.
Collapse
Affiliation(s)
- Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingna Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuqi Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|