1
|
Maeki M, Ishida A, Tokeshi M. Microfluidic technologies for protein crystallography: advances and applications. ANAL SCI 2025:10.1007/s44211-025-00767-z. [PMID: 40257729 DOI: 10.1007/s44211-025-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Three-dimensional protein structure determination by X-ray crystallography is essential for understanding biological function and accelerating drug discovery. However, obtaining high-quality protein crystals remains a significant bottleneck. The conventional crystallization methods are often labor-intensive, require large sample volumes, and offer limited control over the crystallization environment. This review summarizes the application of microfluidic technologies to protein crystallography with a focus on their advantages over the conventional crystallization methods. Microfluidic devices enable nanoliter-scale sample handling, precise control over crystallization conditions, and high-throughput screening, addressing major limitations of the conventional approaches. This review introduces various microfluidic platforms, including droplet-based and microwell-based systems, for protein crystallization, crystal growth control, and on-chip X-ray diffraction analysis. The review also covers the use of microfluidics for creating diffusion-controlled crystal growth environments, real-time crystal growth measurement, on-chip X-ray diffraction measurement, and room-temperature X-ray crystallography with automated data processing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan.
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan.
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| |
Collapse
|
2
|
Erkamp NA, Qi R, Welsh TJ, Knowles TPJ. Microfluidics for multiscale studies of biomolecular condensates. LAB ON A CHIP 2022; 23:9-24. [PMID: 36269080 PMCID: PMC9764808 DOI: 10.1039/d2lc00622g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Membraneless organelles formed through condensation of biomolecules in living cells have become the focus of sustained efforts to elucidate their mechanisms of formation and function. These condensates perform a range of vital functions in cells and are closely connected to key processes in functional and aberrant biology. Since these systems occupy a size scale intermediate between single proteins and conventional protein complexes on the one hand, and cellular length scales on the other hand, they have proved challenging to probe using conventional approaches from either protein science or cell biology. Additionally, condensate can form, solidify and perform functions on various time-scales. From a physical point of view, biomolecular condensates are colloidal soft matter systems, and microfluidic approaches, which originated in soft condensed matter research, have successfully been used to study biomolecular condensates. This review explores how microfluidics have aided condensate research into the thermodynamics, kinetics and other properties of condensates, by offering high-throughput and novel experimental setups.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK
| |
Collapse
|
3
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
4
|
Jakubec M, Novák D, Zatloukalová M, Císařová I, Cibulka R, Favereau L, Crassous J, Cytryniak A, Bilewicz R, Hrbáč J, Storch J, Žádný J, Vacek J. Flavin-Helicene Amphiphilic Hybrids: Synthesis, Characterization, and Preparation of Surface-Supported Films. Chempluschem 2021; 86:982-990. [PMID: 33977667 DOI: 10.1002/cplu.202100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Indexed: 11/07/2022]
Abstract
This work reports on the preparation and structural characterization of flavo[7]helicene 1 (flavin-[7]helicene conjugate), which was subsequently characterized at the molecular level in either an aqueous environment or an organic phase, at the supramolecular level in the form of polymeric layers, and also embedded in a lipidic mesophase environment to study the resulting properties of such a hybrid relative to its parent molecules. The flavin benzo[g]pteridin-2,4-dione (isoalloxazine) was selected for conjugation because of its photoactivity and reversible redox behavior. Compound 1 was prepared from 2-nitroso[6]helicene and 6-methylamino-3-methyluracil, and characterized using common structural and spectroscopic tools: circular dichroism (CD), circularly polarized luminescence (CPL) spectroscopy, cyclic voltammetry (CV), and DFT quantum calculations. In addition, a methodology that allows the loading of 1 enantiomers into an internally nanostructured lipid (1-monoolein) matrix was developed.
Collapse
Affiliation(s)
- Martin Jakubec
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Ludovic Favereau
- Univ. Rennes, CNRS, ISCR-UMR 6226, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Jeanne Crassous
- Univ. Rennes, CNRS, ISCR-UMR 6226, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Adrianna Cytryniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Jan Hrbáč
- Institute of Chemistry, Masaryk University, Kamenice 5, Brno, 725 00, Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| |
Collapse
|
5
|
Maeki M, Ito S, Takeda R, Ueno G, Ishida A, Tani H, Yamamoto M, Tokeshi M. Room-temperature crystallography using a microfluidic protein crystal array device and its application to protein-ligand complex structure analysis. Chem Sci 2020; 11:9072-9087. [PMID: 34094189 PMCID: PMC8162031 DOI: 10.1039/d0sc02117b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Room-temperature (RT) protein crystallography provides significant information to elucidate protein function under physiological conditions. In particular, contrary to typical binding assays, X-ray crystal structure analysis of a protein–ligand complex can determine the three-dimensional (3D) configuration of its binding site. This allows the development of effective drugs by structure-based and fragment-based (FBDD) drug design. However, RT crystallography and RT crystallography-based protein–ligand complex analyses require the preparation and measurement of numerous crystals to avoid the X-ray radiation damage. Thus, for the application of RT crystallography to protein–ligand complex analysis, the simultaneous preparation of protein–ligand complex crystals and sequential X-ray diffraction measurement remain challenging. Here, we report an RT crystallography technique using a microfluidic protein crystal array device for protein–ligand complex structure analysis. We demonstrate the microfluidic sorting of protein crystals into microwells without any complicated procedures and apparatus, whereby the sorted protein crystals are fixed into microwells and sequentially measured to collect X-ray diffraction data. This is followed by automatic data processing to calculate the 3D protein structure. The microfluidic device allows the high-throughput preparation of the protein–ligand complex solely by the replacement of the microchannel content with the required ligand solution. We determined eight trypsin–ligand complex structures for the proof of concept experiment and found differences in the ligand coordination of the corresponding RT and conventional cryogenic structures. This methodology can be applied to easily obtain more natural structures. Moreover, drug development by FBDD could be more effective using the proposed methodology. Room temperature protein crystallography and its application to protein–ligand complex structure analysis was demonstrated using a microfluidic protein crystal array device.![]()
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan.,ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation 3-9-12 Matubara-cho Akishima Tokyo 196-8666 Japan
| | - Reo Takeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Go Ueno
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Masaki Yamamoto
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan.,Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| |
Collapse
|
6
|
Maeki M, Yamazaki S, Takeda R, Ishida A, Tani H, Tokeshi M. Real-Time Measurement of Protein Crystal Growth Rates within the Microfluidic Device to Understand the Microspace Effect. ACS OMEGA 2020; 5:17199-17206. [PMID: 32715205 PMCID: PMC7376889 DOI: 10.1021/acsomega.0c01285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Preparation of high-quality protein crystals is a major challenge in protein crystallography. Natural convection is considered to be an uncontrollable factor of the crystallization process at the ground level as it disturbs the concentration gradient around the growing crystal, resulting in lower-quality crystals. A microfluidic environment expects an imitated microgravity environment because of the small Gr number. However, the mechanism of protein crystal growth in the microfluidic device was not elucidated due to limitations in measuring the crystal growth process within the device. Here, we demonstrate the real-time measurement of protein crystal growth rates within the microfluidic devices by laser confocal microscopy with differential interference contrast microscopy (LCM-DIM) at the nanometer scale. We confirmed the normal growth rates in the 20 and 30 μm-deep microfluidic device to be 42.2 and 536 nm/min, respectively. In addition, the growth rate of crystals in the 20 μm-deep microfluidic device was almost the same as that reported in microgravity conditions. This phenomenon may enable the development of more accessible alternatives to the microgravity environment of the International Space Station.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Shohei Yamazaki
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Reo Takeda
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Cao X, Du Y, Küffner A, Van Wyk J, Arosio P, Wang J, Fischer P, Stavrakis S, deMello A. A Counter Propagating Lens-Mirror System for Ultrahigh Throughput Single Droplet Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907534. [PMID: 32309905 DOI: 10.1002/smll.201907534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence-based detection schemes provide for multiparameter analysis in a broad range of applications in the chemical and biological sciences. Toward the realization of fully portable analysis systems, microfluidic devices integrating diverse functional components have been implemented in a range of out-of-lab environments. That said, there still exits an unmet and recognized need for miniaturized, low-cost, and sensitive optical detection systems, which provide not only for efficient molecular excitation, but also enhanced photon collection capabilities. To this end, an optofluidic platform that is adept at enhancing fluorescence light collection from microfluidic channels is presented. The central component of the detection module is a monolithic parabolic mirror located directly above the microfluidic channel, which acts to enhance the number of emitted photons reflected toward the detector. In addition, two-photon polymerization is used to print a microscale-lens below the microfluidic flow channel and directly opposite the mirror, to enhance the delivery of excitation radiation into the channel. Using such an approach, it is demonstrated that fluorescence signals can be enhanced by over two orders of magnitude, with component parallelization enabling the detection of pL-volume droplets at rates up to 40 000 droplets per second.
Collapse
Affiliation(s)
- Xiaobao Cao
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
- School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Du
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
- College of Sciences, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Andreas Küffner
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Jordan Van Wyk
- Nanotechnology Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Peter Fischer
- IFNH Food Process Engineering Group, ETH Zurich, Schmelzbergstrasse 7, Zürich, 8092, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
8
|
Hejazian M, Darmanin C, Balaur E, Abbey B. Mixing and jetting analysis using continuous flow microfluidic sample delivery devices. RSC Adv 2020; 10:15694-15701. [PMID: 35493684 PMCID: PMC9052392 DOI: 10.1039/d0ra00232a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Serial femtosecond crystallography (SFX) methods used at X-ray free electron lasers (XFELs) offer a range of new opportunities for structural biology. A crucial component of SFX experiments is sample delivery. Microfluidic devices can be employed in SFX experiments to precisely deliver microcrystals to the X-ray beam and to trigger molecular dynamics via rapid mix-and-inject measurements. Here, for the first time, we have developed a process based on high-resolution photolithography using SU8 on glass to fabricate microfluidic mix-and-inject devices. In order to characterise these devices a broad range of flow rates are used and the mixing and jetting response of the devices monitored. We observe that a stable jet is formed using these devices when injecting DI-water. Three different jetting regimes, liquid column, ribbon, and cylindrical jet, were observed. Furthermore, fluorescence experiments confirm that rapid and uniform mixing of the two injected solutions is possible using these devices indicating that they could be used to probe molecular dynamics on sub-microsecond timescales.
Collapse
Affiliation(s)
- Majid Hejazian
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University VIC 3086 Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University VIC 3086 Australia
| | - Eugeniu Balaur
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University VIC 3086 Australia
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University VIC 3086 Australia
| |
Collapse
|
9
|
Echelmeier A, Kim D, Cruz Villarreal J, Coe J, Quintana S, Brehm G, Egatz-Gomez A, Nazari R, Sierra RG, Koglin JE, Batyuk A, Hunter MS, Boutet S, Zatsepin N, Kirian RA, Grant TD, Fromme P, Ros A. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J Appl Crystallogr 2019; 52:997-1008. [PMID: 31636518 PMCID: PMC6782075 DOI: 10.1107/s1600576719010343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
The role of surface wetting properties and their impact on the performance of 3D printed microfluidic droplet generation devices for serial femtosecond crystallography (SFX) are reported. SFX is a novel crystallography method enabling structure determination of proteins at room temperature with atomic resolution using X-ray free-electron lasers (XFELs). In SFX, protein crystals in their mother liquor are delivered and intersected with a pulsed X-ray beam using a liquid jet injector. Owing to the pulsed nature of the X-ray beam, liquid jets tend to waste the vast majority of injected crystals, which this work aims to overcome with the delivery of aqueous protein crystal suspension droplets segmented by an oil phase. For this purpose, 3D printed droplet generators that can be easily customized for a variety of XFEL measurements have been developed. The surface properties, in particular the wetting properties of the resist materials compatible with the employed two-photon printing technology, have so far not been characterized extensively, but are crucial for stable droplet generation. This work investigates experimentally the effectiveness and the long-term stability of three different surface treatments on photoresist films and glass as models for our 3D printed droplet generator and the fused silica capillaries employed in the other fluidic components of an SFX experiment. Finally, the droplet generation performance of an assembly consisting of the 3D printed device and fused silica capillaries is examined. Stable and reproducible droplet generation was achieved with a fluorinated surface coating which also allowed for robust downstream droplet delivery. Experimental XFEL diffraction data of crystals formed from the large membrane protein complex photosystem I demonstrate the full compatibility of the new injection method with very fragile membrane protein crystals and show that successful droplet generation of crystal-laden aqueous droplets intersected by an oil phase correlates with increased crystal hit rates.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jesse Coe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sebastian Quintana
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gerrit Brehm
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jason E. Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Thomas D. Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Candoni N, Grossier R, Lagaize M, Veesler S. Advances in the Use of Microfluidics to Study Crystallization Fundamentals. Annu Rev Chem Biomol Eng 2019; 10:59-83. [PMID: 31018097 DOI: 10.1146/annurev-chembioeng-060718-030312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review compares droplet-based microfluidic systems used to study crystallization fundamentals in chemistry and biology. An original high-throughput droplet-based microfluidic platform is presented. It uses nanoliter droplets, generates a chemical library, and directly solubilizes powder, thus economizing both material and time. It is compatible with all solvents without the need for surfactant. Its flexibility permits phase diagram determination and crystallization studies (screening and optimizing experiments) and makes it easy to use for nonspecialists in microfluidics. Moreover, it allows concentration measurement via ultraviolet spectroscopy and solid characterization via X-ray diffraction analysis.
Collapse
Affiliation(s)
- Nadine Candoni
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Romain Grossier
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Mehdi Lagaize
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Stéphane Veesler
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| |
Collapse
|
11
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Dynamic characterization of nanoparticles production in a droplet-based continuous flow microreactor. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Ferreira J, Castro F, Rocha F, Kuhn S. Protein crystallization in a droplet-based microfluidic device: Hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
The Study of the Mechanism of Protein Crystallization in Space by Using Microchannel to Simulate Microgravity Environment. CRYSTALS 2018. [DOI: 10.3390/cryst8110400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Space is expected to be a convection-free, quiescent environment for the production of large-size and high-quality protein crystals. However, the mechanisms by which the diffusion environment in space improves the quality of the protein crystals are not fully understood. The interior of a microfluidic device can be used to simulate a microgravity environment to investigate the protein crystallization mechanism that occurs in space. In the present study, lysozyme crystals were grown in a prototype microchannel device with a height of 50 μm in a glass-polydimethylsiloxane (PDMS)-glass sandwich structure. Comparative experiments were also conducted in a sample pool with a height of 2 mm under the same growth conditions. We compared the crystal morphologies and growth rates of the grown crystals in the two sample pools. The experimental results showed that at very low initial supersaturation, the morphology and growth rates of lysozyme crystals under the simulated microgravity conditions is similar to that on Earth. With increasing initial supersaturation, a convection-free, quiescent environment is better for lysozyme crystal growth. When the initial supersaturation exceeded a threshold, the growth of the lysozyme crystal surface under the simulated microgravity conditions never completely transform from isotropic to anisotropic. The experimental results showed that the convection may have a dual effect on the crystal morphology. Convection can increase the roughness of the crystal surface and promote the transformation of the crystal form from circular to tetragonal during the crystallization process.
Collapse
|
16
|
Mizuta T, Maeno K, Sueyoshi K, Endo T, Hisamoto H. Regioselective Immobilization of a PVC Membrane Composed of an Ionic Liquid-based Dye on Convex-shaped PDMS Surface for Multiplexed Microanalytical Devices. ANAL SCI 2018; 34:517-519. [PMID: 29743421 DOI: 10.2116/analsci.18c008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel method for the intact immobilization of a very-thin and soft PVC membrane on a convex-shaped poly(dimethylsiloxane) (PDMS) surface is described. The present method using PVA film as a sacrificial layer allowed successful immobilization of an intact PVC membrane using an ionic liquid-based dye on only the convex-shaped PDMS surface without any deformation or increase of the inhomogeneity. In addition, two different kinds of PVC membranes were successfully immobilized simultaneously toward multiplexed detection.
Collapse
Affiliation(s)
- Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Kenichi Maeno
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
17
|
Ma Y, Zheng M, Bah MG, Wang J. Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 2018; 128:84-100. [PMID: 29567396 DOI: 10.1016/j.addr.2018.03.008] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Lipid-based nanobiomaterials as liposomes and lipid nanoparticles (LNPs) are the most widely used nanocarriers for drug delivery systems (DDSs). Extracellular vesicles (EVs) and exosomes are also expected to be applied as DDS nanocarriers. The performance of nanomedicines relies on their components such as lipids, targeting ligands, encapsulated DNA, encapsulated RNA, and drugs. Recently, the importance of the nanocarrier sizes smaller than 100nm is attracting attention as a means to improve nanomedicine performance. Microfluidics and lab-on-a chip technologies make it possible to produce size-controlled LNPs by a simple continuous flow process and to separate EVs from blood samples by using a surface marker, ligand, or electric charge or by making a mass or particle size discrimination. Here, we overview recent advances in microfluidic devices and techniques for liposomes, LNPs, and EVs and their applications for DDSs.
Collapse
|
19
|
Burton CG, Axford D, Edwards AMJ, Gildea RJ, Morris RH, Newton MI, Orville AM, Prince M, Topham PD, Docker PT. An acoustic on-chip goniometer for room temperature macromolecular crystallography. LAB ON A CHIP 2017; 17:4225-4230. [PMID: 29124258 DOI: 10.1039/c7lc00812k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.
Collapse
Affiliation(s)
- C G Burton
- Aston Institute of Material Research, Aston University, Birmingham B4 7ET, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li S, Zeng M, Gaule T, McPherson MJ, Meldrum FC. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702154. [PMID: 28873281 DOI: 10.1002/smll.201702154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run-times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of "picoinjector" that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side-capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run-times at high supersaturations. This compares with conventional devices that use a Y-junction to achieve solution loading, where in-channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Muling Zeng
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thembaninkosi Gaule
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Espinosa S, Zhang L, Li X, Zhao R. Understanding pre-mRNA splicing through crystallography. Methods 2017; 125:55-62. [PMID: 28506657 PMCID: PMC5546983 DOI: 10.1016/j.ymeth.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes.
Collapse
|
22
|
Giegé R. What macromolecular crystallogenesis tells us - what is needed in the future. IUCRJ 2017; 4:340-349. [PMID: 28875021 PMCID: PMC5571797 DOI: 10.1107/s2052252517006595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/02/2017] [Indexed: 05/05/2023]
Abstract
Crystallogenesis is a longstanding topic that has transformed into a discipline that is mainly focused on the preparation of crystals for practising crystallo-graphers. Although the idiosyncratic features of proteins have to be taken into account, the crystallization of proteins is governed by the same physics as the crystallization of inorganic materials. At present, a diversified panel of crystallization methods adapted to proteins has been validated, and although only a few methods are in current practice, the success rate of crystallization has increased constantly, leading to the determination of ∼105 X-ray structures. These structures reveal a huge repertoire of protein folds, but they only cover a restricted part of macromolecular diversity across the tree of life. In the future, crystals representative of missing structures or that will better document the structural dynamics and functional steps underlying biological processes need to be grown. For the pertinent choice of biologically relevant targets, computer-guided analysis of structural databases is needed. From another perspective, crystallization is a self-assembly process that can occur in the bulk of crowded fluids, with crystals being supramolecular assemblies. Life also uses self-assembly and supramolecular processes leading to transient, or less often stable, complexes. An integrated view of supramolecularity implies that proteins crystallizing either in vitro or in vivo or participating in cellular processes share common attributes, notably determinants and antideterminants that favour or disfavour their correct or incorrect associations. As a result, under in vivo conditions proteins show a balance between features that favour or disfavour association. If this balance is broken, disorders/diseases occur. Understanding crystallization under in vivo conditions is a challenge for the future. In this quest, the analysis of packing contacts and contacts within oligomers will be crucial in order to decipher the rules governing protein self-assembly and will guide the engineering of novel biomaterials. In a wider perspective, understanding such contacts will open the route towards supramolecular biology and generalized crystallogenesis.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg and CNRS, F-67084 Strasbourg, France
| |
Collapse
|
23
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
This chapter provides a review of different advanced methods that help to increase the success rate of a crystallization project, by producing larger and higher quality single crystals for determination of macromolecular structures by crystallographic methods. For this purpose, the chapter is divided into three parts. The first part deals with the fundamentals for understanding the crystallization process through different strategies based on physical and chemical approaches. The second part presents new approaches involved in more sophisticated methods not only for growing protein crystals but also for controlling the size and orientation of crystals through utilization of electromagnetic fields and other advanced techniques. The last section deals with three different aspects: the importance of microgravity, the use of ligands to stabilize proteins, and the use of microfluidics to obtain protein crystals. All these advanced methods will allow the readers to obtain suitable crystalline samples for high-resolution X-ray and neutron crystallography.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Av. Universidad 3000, Cd.Mx., Mexico City, 04510, Mexico.
| |
Collapse
|
25
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL. Graphene-based microfluidics for serial crystallography. LAB ON A CHIP 2016; 16:3082-96. [PMID: 27241728 PMCID: PMC4970872 DOI: 10.1039/c6lc00451b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Yuxi Wang
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Kristopher W Kolewe
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Vukica Srajer
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Robert Henning
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Jessica D Schiffman
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Christos Dimitrakopoulos
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Sarah L Perry
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
27
|
Hibara A, Fukuyama M, Chung M, Priest C, Proskurnin MA. Interfacial Phenomena and Fluid Control in Micro/Nanofluidics. ANAL SCI 2016; 32:11-21. [PMID: 26753700 DOI: 10.2116/analsci.32.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fundamental aspects of rapidly advancing micro/nanofluidic devices are reviewed from the perspective of liquid interface chemistry and physics, including the influence of capillary pressure in microfluidic two-phase flows and phase transitions related to capillary condensation.
Collapse
Affiliation(s)
- Akihide Hibara
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | | | | | | | | |
Collapse
|
28
|
SASAKI N, SATO K. Analytical Applications of Microfluidic Vascular Models. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Naoki SASAKI
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University
| | - Kae SATO
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| |
Collapse
|
29
|
Maeki M, Yamazaki S, Pawate AS, Ishida A, Tani H, Yamashita K, Sugishima M, Watanabe K, Tokeshi M, Kenis PJA, Miyazaki M. A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm 2016. [DOI: 10.1039/c6ce01671e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|