1
|
Yoshioka H, Fukaya S, Tominaga S, Nagatsu A, Miura N, Maeda T. Protective effect of the Kampo formula “Juzen-taiho-to” on isoniazid- and rifampicin-induced hepatotoxicity in mice. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hiroki Yoshioka
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| | - Shiori Fukaya
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| | - Sarah Tominaga
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| | - Akito Nagatsu
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| | - Nobuhiko Miura
- Division of Health Effects Research, Japan National Institute of Occupational Safety and Health
| | - Tohru Maeda
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| |
Collapse
|
2
|
Fukaya S, Nagatsu A, Yoshioka H. The Kampo formula “Juzen-taiho-to” exerts protective effects on ethanol-induced liver injury in mice. ACTA ACUST UNITED AC 2018. [DOI: 10.2131/fts.5.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Yoshioka H, Usuda H, Fujii H, Nonogaki T. Sasa veitchii extracts suppress acetaminophen-induced hepatotoxicity in mice. Environ Health Prev Med 2017; 22:54. [PMID: 29165178 PMCID: PMC5664914 DOI: 10.1186/s12199-017-0662-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023] Open
Abstract
Background The aim of this study was to investigate the therapeutic effects of a Sasa veitchii leaf extract (SE) on acetaminophen (APAP)-induced hepatotoxicity. Methods Seven-week-old male ddY mice were orally administered SE or saline (0.2 mL) once a day for a week. Twenty-four hours after the last pretreatment, the mice were intraperitoneally injected with 550 mg/kg APAP or saline under fasting conditions. The mice from each group were euthanized and bled for plasma analysis 2, 6, 24, and 72 h after the injection. Results We found that pretreatment with SE significantly decreased hepatic injury markers (i.e., alanine aminotransferase and aspartate aminotransferase), oxidative stress (malondialdehyde and glutathione level), inflammatory cytokines, histological damage, c-jun N-terminal kinase activation, and receptor-interacting protein-1 activation. Further, SE pretreatment decreased Cyp2e1 expression and increased total antioxidant capacity in the liver. Conclusion Our findings demonstrate that prophylactic SE treatment protects mice from APAP-induced hepatotoxicity through modulation of Cyp2e1 expression and antioxidant capacity.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Hirohisa Fujii
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| |
Collapse
|
4
|
Yoshioka H, Usuda H, Miura N, Fukuishi N, Nonogaki T, Onosaka S. Vitamin D3-induced hypercalcemia increases carbon tetrachloride-induced hepatotoxicity through elevated oxidative stress in mice. PLoS One 2017; 12:e0176524. [PMID: 28448545 PMCID: PMC5407844 DOI: 10.1371/journal.pone.0176524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, Omori, Moriyamaku, Nagoya, Aichi, Japan
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, Japan
- * E-mail:
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Enya-cho, Izumo, Shimane, Japan
| | - Nobuhiko Miura
- Division of Health Effects Research, Japan National Institute of Occupational Safety and Health, Nagao, Tamaku, Kawasaki, Kanagawa, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, Omori, Moriyamaku, Nagoya, Aichi, Japan
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, Omori, Moriyamaku, Nagoya, Aichi, Japan
| | - Satomi Onosaka
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Yoshioka H, Tanaka M, Fujii H, Nonogaki T. Sasa veitchii extract suppresses carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Environ Health Prev Med 2016; 21:554-562. [PMID: 27738877 DOI: 10.1007/s12199-016-0581-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the therapeutic effects of a Sasa veitchii leaf extract (SE) on carbon tetrachloride (CCl4)-induced hepato- and nephrotoxicity. METHODS Seven-week-old male ddy mice were orally administered SE or saline for seven days. Twenty-four hours after the last SE or saline administration, the mice were intraperitoneally injected with 3 g/kg CCl4 or olive oil. The mice from each group were euthanized and bled for plasma analysis 24 h after the CCl4/olive oil injection. RESULTS We found that pretreatment with SE completely abolished the CCl4-induced mortality in the mice after 24 h. The mice pretreated with SE exhibited significantly decreased levels of functional markers, and reduced histological damage in both the liver and the kidney. Furthermore, we found that the SE pretreatment decreased lipid peroxidation and calcium levels in the liver. Although SE could not induce the free radical-scavenging metallothioneins, the plasma biological antioxidant power was significantly increased in the mice pretreated with SE. CONCLUSION Our findings demonstrate that prophylactic treatment with SE protects mice from CCl4-induced lethal toxicity by decreasing oxidative stress in the liver and kidney, presumably by increasing biological antioxidant power.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| | - Miki Tanaka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Hirohisa Fujii
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| |
Collapse
|
6
|
Yoshioka H, Nonogaki T, Fukuishi N, Onosaka S. Calcium-deficient diet attenuates carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation and inflammatory response. Heliyon 2016; 2:e00126. [PMID: 27441297 PMCID: PMC4946292 DOI: 10.1016/j.heliyon.2016.e00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to investigate whether a Ca-deficient diet has an attenuating effect on carbon tetrachloride (CCl4)-induced hepatotoxicity. Four-week-old male ddY mice were fed a Ca-deficient diet for 4 weeks as a part of the experimental protocol. While hypocalcemia was observed, there was no significant change in body weight. The CCl4-exposed hypocalcemic mice exhibited a significant decrease in alanine aminotransferase and aspartate aminotransferase activities at both 6 h and 24 h even though markers of renal function remained unchanged. Moreover, lipid peroxidation was impaired and total antioxidant power was partially recovered in the liver. Studies conducted in parallel with the biochemical analysis revealed that hepatic histopathological damage was attenuated 24 h post CCl4 injection in hypocalcemic mice fed the Ca-deficient diet. Finally, this diet impaired CCl4-induced inflammatory responses. Although upregulation of Ca concentration is a known indicator of terminal progression to cell death in the liver, these results suggest that Ca is also involved in other phases of CCl4-induced hepatotoxicity, via regulation of oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo 651-2180, Japan
- Corresponding author.
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Satomi Onosaka
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo 651-2180, Japan
| |
Collapse
|
7
|
Yoshioka H, Fukaya S, Fukuishi N, Nagatsu A, Nonogaki T, Onosaka S. Bromobenzene-induced lethal toxicity in mouse is prevented by pretreatment with zinc sulfate. Chem Biol Interact 2016; 254:117-23. [PMID: 27270452 DOI: 10.1016/j.cbi.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/24/2016] [Accepted: 06/03/2016] [Indexed: 01/16/2023]
Abstract
In the current study, we evaluated the protective effect of zinc (Zn) against bromobenzene (BB) -induced lethal toxicity. We used Zn because this element is known to be an inducer of metallothionein (MT), which is in turn known to serve as an endogenous scavenger of free radicals. We administered Zn (as ZnSO4) at 50 mg/kg subcutaneously once-daily for 3 successive days prior to a single intraperitoneal administration of 1.2 g/kg BB in male ddY mice. Our results showed that pretreatment with Zn completely abolished the BB-induced mortality of mice until 48 h. We also found that pretreatment of mice with Zn significantly decreased the functional marker levels and reduced the histological damage both in liver and kidney as assessed at 18 h post-BB. We also showed that pretreatment with Zn enhanced antioxidative activity, resulting in decreased lipid peroxidation in both liver and kidney. Moreover, BB-induced calcium levels were downregulated by pretreatment with Zn. In addition, Zn-induced MT was decreased in Zn + BB-treated animals, implying that MT was consumed by BB-induced radicals. These findings suggest that prophylaxis with Zn protects mice from BB-induced lethal toxicity by decreasing oxidative stress in liver and kidney, presumably by induction of MT, which scavenges radicals induced by BB exposure.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan; Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan.
| | - Shiori Fukaya
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Akito Nagatsu
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Satomi Onosaka
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
| |
Collapse
|