1
|
Gao M, Qi Z, Deng M, Huang H, Xu Z, Guo G, Jing J, Huang X, Xu M, Kloeber JA, Liu S, Huang J, Lou Z, Han J. The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene 2022; 41:4018-4027. [PMID: 35821281 DOI: 10.1038/s41388-022-02403-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, Chinese Academy of Medical Sciences, 100021, Beijing, China
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiajun Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
2
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
3
|
Tripathi S, Fhatima S, Parmar D, Singh DP, Mishra S, Mishra R, Singh G. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse ( Mus musculus) brain. 3 Biotech 2022; 12:116. [PMID: 35547012 PMCID: PMC9023648 DOI: 10.1007/s13205-022-03171-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022] Open
Abstract
Arsenic and chromium are the most common environmental toxicants prevailing in nature. Hence, the present study endeavors to investigate the salutary effects of Coenzyme Q10 (CoQ10), Biochanin A (BCA), and Phloretin (PHL) on the combined neurotoxic impact of arsenic and chromium in the Swiss albino mice (Mus musculus). Sodium meta-arsenite (100 ppm) and potassium dichromate (75 ppm) were given orally in conjugation with CoQ10 (10 mg/kg), BCA & PHL (50 mg/kg each) in accordance with body weight per day for the 2 weeks experimental duration. Weight reduction was figured out in the exposed toxic group of arsenic and chromium in contrast with the comparison group (control), and with the selected anti-oxidants treatment, it rose significantly to the basal status (p < 0.05). The concentration of arsenic and chromium was reduced significantly (p < 0.001) amidst all the natural compounds co-medicated groups. Anti-oxidant indicators, viz. lipid peroxidation (LPO) and protein carbonyl content (PCC), were found elevated, with reduction observed in the levels of superoxide dismutase (SOD), reduced glutathione (GSH), glutathione s-transferase (GST), and total thiols (TT) in the arsenic and chromium, co-exposed mice. The alterations in redox homeostasis were well corroborated with the estimations of cholinesterase's enzymes (p < 0.05) along with DNA fragmentation assay and altered Nrf2 signaling. The administration of CoQ10, BCA, and PHL ameliorated the effects of arsenic and chromium induced oxidative stress in the exposed mice. Our research unfolds the remedial outcome of these natural compounds contrary to the combined arsenic and chromium associated-neurotoxicity in the experimental model.
Collapse
|
4
|
Singh G, Thaker R, Sharma A, Parmar D. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20517-20536. [PMID: 33410021 DOI: 10.1007/s11356-020-11740-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
One of the most common toxicant prevailing in our environment is the arsenic. The present study is an attempt to investigate the effects of some of the common flavonoids, such as biochanin A (BCA), phloretin, and epigallocatechin-3-gallate (EGCG), on arsenic toxicity in the Swiss albino mice. For this purpose, mice were orally treated with sodium meta-arsenite (20 mg/kg bw/day), along with co-administration of BCA (50 mg/kg bw/day), phloretin (50 mg/kg bw/day), and EGCG (40 mg/kg bw/day) for the 2-week duration. All the mice were euthanized at the end of the treatment period, and the observations were made in the following parameters. Arsenic reduced the sperm motility as compared with the control (p < 0.05) and was restored back to the normal status with the flavonoids treatment significantly (p < 0.05). The arsenic concentrations in the kidney and liver tissues were found significantly reduced with all the flavonoids co-treatment (p < 0.001). There was a reduction in the levels of superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione S-transferase (GST) antioxidant markers, with the increased lipid peroxidation (LPO), protein carbonyl content (PCC), and catalase (CAT) levels in the arsenic-intoxicated mice performed in the different tissues. The biochemical homeostasis alterations were well correlated with the estimations of cholinesterase enzyme levels in the brain tissues (p < 0.05) along with DNA damage analysis (Comet) carried out in the blood cells (p < 0.05). These above results are well corroborated with the histopathological findings performed in the brain tissue, along with the increased upregulation seen in the Nrf2 signalling, with all the flavonoid co-treatment carried in the kidney tissue. The administration of BCA, phloretin, and EGCG, in a major way, reversed the alterations in the abovementioned parameters in the arsenic-intoxicated mice. Our findings revealed the beneficial effects of the flavonoids against the arsenic-induced toxicity, due to their ability to enhance the intracellular antioxidant response system by modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Gyanendra Singh
- Division of Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| | - Riddhi Thaker
- Division of Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Anupama Sharma
- Division of Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Dharati Parmar
- Division of Toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| |
Collapse
|
5
|
Liu Y, Lang F, Yang C. NRF2 in human neoplasm: Cancer biology and potential therapeutic target. Pharmacol Ther 2021; 217:107664. [DOI: 10.1016/j.pharmthera.2020.107664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
6
|
Abiko Y, Okada M, Aoki H, Mizokawa M, Kumagai Y. A strategy for repression of arsenic toxicity through nuclear factor E2 related factor 2 activation mediated by the (E)-2-alkenals in Coriandrum sativum L. leaf extract. Food Chem Toxicol 2020; 145:111706. [DOI: 10.1016/j.fct.2020.111706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
|
7
|
Wu J, Ni Y, Yang Q, Mao J, Zhu X, Tao S, Kato K, Zhang J, Wang D, Yamanaka K, An Y. Long-term arsenite exposure decreases autophagy by increased release of Nrf2 in transformed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139425. [PMID: 32450402 DOI: 10.1016/j.scitotenv.2020.139425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Autophagy dysfunction in arsenite toxicity plays critical roles in cancer development and progression. However, the precise mechanisms of arsenite-induced skin cancer by blocking autophagy remain uncertain. Herein, this study investigated molecular mechanisms of arsenite-induced autophagy dysfunction mediated by nuclear factor erythroid-2 related factor 2 (Nrf2) in human keratinocyte (HaCaT) cells. The effects of long-term arsenite exposure on Nrf2 activation and autophagy were established using a siRNA interference assay and western blots. A specific siRNA of Nrf2 was used to verify that autophagy induced by arsenite can be influenced by Nrf2. Specific inhibitors of PI3K (LY294002) and mTOR (Rapamycin) and siRNA of Nrf2 were employed to verify that upregulation of Nrf2 correlated with activating the PI3K/Akt pathway. Downstream mTOR and Bcl2 were upregulated by Nrf2 signaling, inhibiting autophagy initiation in arsenite-exposed HaCaT cells. In conclusion, our data suggest that long-term exposure to arsenite promotes Nrf2 upregulation via the PI3K/Akt pathway and, along with upregulation of downstream mTOR and Bcl2, contributes to autophagy dysfunction in transformed HaCaT cells. This work provides new insights into the mechanisms underlying arsenite-induced autophagy dysfunction in cancer promotion and malignancy progression.
Collapse
Affiliation(s)
- Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yiping Ni
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuerui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
8
|
Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019; 143:164-175. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2-related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Du X, Tian M, Wang X, Zhang J, Huang Q, Liu L, Shen H. Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:590-600. [PMID: 29223816 DOI: 10.1016/j.envpol.2017.11.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/03/2017] [Accepted: 11/25/2017] [Indexed: 05/25/2023]
Abstract
The neurotoxicity of arsenic is a serious health problem, especially for children. DNA epigenetic change may be an important pathogenic mechanism, but the molecular pathway remains obscure. In this study, the weaned male Sprague-Dawly (SD) rats were treated with arsenic trioxide via drinking water for 6 months, simulating real developmental exposure situation of children. Arsenic exposure impaired the cognitive abilities, and altered the expression of neuronal activity-regulated genes. Total arsenic concentrations of cortex and hippocampus tissues were significantly increased in a dose-dependent manner. The reduction in 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5hmC) levels as well as the down-regulation of DNA methyltransferases (DNMTs) and ten-eleven translocations (TETs) expression suggested that DNA methylation/demethylation processes were significantly suppressed in brain tissues. S-adenosylmethionine (SAM) level wasn't changed, but the expression of the important indicators of oxidative/anti-oxidative balance and tricarboxylic acid (TCA) cycle was significantly deregulated. Overall, arsenic can disrupt oxidative/anti-oxidative balance, further inhibit TETs expression through TCA cycle and alpha-ketoglutarate (α-KG) pathway, and consequently cause DNA methylation/demethylation disruption. The present study implies oxidative stress but not SAM depletion may lead to DNA epigenetic alteration and arsenic neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Xiaoxue Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, China.
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
10
|
Pace C, Dagda R, Angermann J. Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity. TOXICS 2017; 5:toxics5040038. [PMID: 29206204 PMCID: PMC5750566 DOI: 10.3390/toxics5040038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022]
Abstract
Arsenic is a potent cardiovascular toxicant associated with numerous biomarkers of cardiovascular diseases in exposed human populations. Arsenic is also a carcinogen, yet arsenic trioxide is used as a therapeutic agent in the treatment of acute promyelotic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. Many of the toxic effects of arsenic are mediated by mitochondrial dysfunction and related to arsenic's effect on oxidative stress. Therefore, we investigated the effectiveness of antioxidants against arsenic induced cardiovascular dysfunction. A growing body of evidence suggests that antioxidant phytonutrients may ameliorate the toxic effects of arsenic on mitochondria by scavenging free radicals. This review identifies 21 antioxidants that can effectively reverse mitochondrial dysfunction and oxidative stress in cardiovascular cells and tissues. In addition, we propose that antioxidants have the potential to improve the cardiovascular health of millions of people chronically exposed to elevated arsenic concentrations through contaminated water supplies or used to treat certain types of leukemias. Importantly, we identify conceptual gaps in research and development of new mito-protective antioxidants and suggest avenues for future research to improve bioavailability of antioxidants and distribution to target tissues in order reduce arsenic-induced cardiovascular toxicity in a real-world context.
Collapse
Affiliation(s)
- Clare Pace
- Department of Environmental Science and Health, University of Nevada, Reno, NV 89557, USA.
| | - Ruben Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Jeff Angermann
- School of Community Health Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
11
|
The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO 2-induced hepatotoxicity. Oncotarget 2017; 8:65302-65312. [PMID: 29029432 PMCID: PMC5630332 DOI: 10.18632/oncotarget.18582] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Arsenic exposure produces hepatotoxicity. The common mechanism determining its toxicity is the generation of oxidative stress. Oxidative stress induced by arsenic leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. (-)-Epigallocatechin-3-gallate (EGCG) possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study aims to evaluate effects of EGCG on arsenic-induced hepatotoxicity and activation of Nrf2 pathway. Plasma activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were measured; Histological analyses were conducted to observe morphological changes; Biochemical indexes such as oxidative stress (Catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS)), Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1) were assessed. The results showed that EGCG inhibited arsenic-induced hepatic pathological damage, liver ROS level and MDA level. Arsenic decreases the antioxidant enzymes SOD, GPX, and CAT activity and the decrease was inhibited by treatment of EGCG. Furthermore, EGCG attenuated the retention of arsenic in liver tissues and improved the expressions of Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1). These findings provide evidences that EGCG may be useful for reducing hepatotoxicity associated with oxidative stress by the activation of Nrf2 signaling pathway. Our findings suggest a possible mechanism of antioxidant EGCG in preventing hepatotoxicity, which implicate that EGCG may be a potential treatment for arsenicosis therapy.
Collapse
|
12
|
Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453926. [PMID: 28101296 PMCID: PMC5215260 DOI: 10.1155/2016/3453926] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.
Collapse
|
13
|
Fujie T, Murakami M, Yoshida E, Tachinami T, Shinkai Y, Fujiwara Y, Yamamoto C, Kumagai Y, Naka H, Kaji T. Copper diethyldithiocarbamate as an activator of Nrf2 in cultured vascular endothelial cells. J Biol Inorg Chem 2016; 21:263-73. [PMID: 26825804 PMCID: PMC4801994 DOI: 10.1007/s00775-016-1337-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
The interest in organic-inorganic hybrid molecules as molecular probes for biological systems has been growing rapidly. Such hybrid molecules exhibit unique biological activities. Herein, copper(II) bis(diethyldithiocarbamate) (Cu10) was found to activate the transcription factor NF-E2-related factor 2 (Nrf2), which is responsible for regulating antioxidant and phase II xenobiotic enzymes, in vascular endothelial cells. The copper complex rapidly accumulated within cells and induced nuclear translocation of Nrf2, leading to upregulation of the expression of downstream proteins without cytotoxic effects. However, while copper bis(2-hydroxyethyl)dithiocarbamate activated Nrf2, copper ion, diethyldithiocarbamate ligand with or without zinc or iron failed to exhibit this activity. Intracellular accumulation of Cu10 was higher than that of Cu(II) and Cu(I). While the accumulation of copper(II) bis(dimethyldithiocarbamate) was reduced by small interfering RNA (siRNA)-mediated knockdown of the copper transporter CTR1, the knockdown did not affect Cu10 accumulation, indicating that Cu10 rapidly enters vascular endothelial cells via CTR1-independent mechanisms. In addition, copper and iron complexes with other ligands tested could not activate Nrf2, suggesting that the intramolecular interaction between copper and dithiocarbamate ligand is important for the activation of the transcription factor. Cu10 induced the expression of heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase, downstream proteins of Nrf2. It was suggested that Cu10-induced activation of Nrf2 was due to proteasome inhibition as well as binding to Kelch-like ECH-associated protein 1. Since the effects of Cu10 on vascular endothelial cells are unique and diverse, the copper complex may be a good molecular probe to analyze the functions of the cells.
Collapse
Affiliation(s)
- Tomoya Fujie
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Masaki Murakami
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tadashi Tachinami
- Graduate School of Science and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Hiroshi Naka
- Graduate School of Science and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
14
|
Li J, Duan X, Dong D, Zhang Y, Li W, Zhao L, Nie H, Sun G, Li B. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12628-42. [PMID: 26473898 PMCID: PMC4626990 DOI: 10.3390/ijerph121012628] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
Inorganic arsenic (iAs), a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS) production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO2 elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO2 exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Xiaoxu Duan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Dandan Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
- Cao County Center for Disease Control and Prevention, Heze 274400, China.
| | - Yang Zhang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Wei Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Lu Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Huifang Nie
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Guifan Sun
- Environment and Non-Communicable Diseases Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Bing Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| |
Collapse
|
15
|
Guo W, Zhang J, Li W, Xu M, Liu S. Disruption of iron homeostasis and resultant health effects upon exposure to various environmental pollutants: A critical review. J Environ Sci (China) 2015; 34:155-164. [PMID: 26257358 DOI: 10.1016/j.jes.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuously increasing. Although intense efforts have been made to understand the health effects of environmental pollutants, most studies have only focused on direct toxic effects and failed to simultaneously evaluate the long-term adaptive, compensatory and secondary impacts on health. Burgeoning evidence suggests that environmental pollutants may directly or indirectly give rise to disordered element homeostasis, such as for iron. It is crucially important to maintain concerted cellular and systemic iron metabolism. Otherwise, disordered iron metabolism would lead to cytotoxicity and increased risk for various diseases, including cancers. Thus, study on the effects of environmental pollutants upon iron homeostasis is urgently needed. In this review, we recapitulate the available findings on the direct or indirect impacts of environmental pollutants, including persistent organic pollutants (POPs), heavy metals and pesticides, on iron homeostasis and associated adverse health problems. In view of the unanswered questions, more efforts are warranted to investigate the disruptive effects of environmental pollutants on iron homeostasis and consequent toxicities.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjun Li
- School of Stomatology, Wuhan University, Wuhan 430072, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
16
|
Lutein has a protective effect on hepatotoxicity induced by arsenic via Nrf2 signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:315205. [PMID: 25815309 PMCID: PMC4357133 DOI: 10.1155/2015/315205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Arsenic produces liver disease through the oxidative stress. While lutein can alleviate cytotoxic and oxidative injury, nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a critical role in defending oxidative species. However, the mechanisms by which lutein protects the liver against the effect of arsenic are not known. Therefore, this study aims to investigate the mechanisms involved in the action of lutein using mice model in which hepatotoxicity was induced by arsenic. We found that mice treatment with lutein could reverse changes in morphological and liver indexes and result in a significant improvement in hepatic function comparing with arsenic trioxide group. Lutein treatment improved the activities of antioxidant enzymes and attenuated increasing of ROS and MDA induced by arsenic trioxide. Lutein could increase the mRNA and protein expression of Nrf2 signaling related genes (Nrf2, Nqo1, Ho-1, and Gst). These findings provide additional evidence that lutein may be useful for reducing reproductive injury associated with oxidative stress by the activation of Nrf2 signaling. Our findings suggest a possible mechanism of antioxidant lutein in preventing the hepatotoxicity, which implicate that a dietary lutein may be a potential treatment for liver diseases, especially for arsenicosis therapy.
Collapse
|
17
|
Zhang X, Zhang X, Niu Z, Qi Y, Huang D, Zhang Y. 2,4,6-Trichlorophenol Cytotoxicity Involves Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis. Int J Toxicol 2014; 33:532-41. [DOI: 10.1177/1091581814557701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aims to evaluate the cytotoxicity and potential mechanisms of 2,4,6-trichlorophenol (2,4,6-TCP) in mouse embryonic fibroblasts. Our results show that 2,4,6-TCP causes morphological changes and reduces cell viability. The overproduction of reactive oxygen species, the upregulation of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX1) messenger RNA (mRNA) expressions, and the nuclear translocation of Nrf2 protein demonstrate that 2,4,6-TCP induces oxidative stress, and the Nrf2/HMOX1 pathway might be involved in 2,4,6-TCP-induced antioxidative response. Simultaneously, our data also demonstrate that 2,4,6-TCP upregulates the expressions of binding immunoglobulin protein, inositol-requiring enzyme/endonuclease 1α, and C/EBP homologous protein; stimulates α subunit of eukaryotic translation initiation factor 2 phosphorylation; and induces the splicing of Xbp1 mRNA, suggesting that endoplasmic reticulum (ER) stress is triggered. Moreover, 2,4,6-TCP alters the mitochondrial membrane potential and increases the apoptosis rate, the caspase 3 activity, and the Bax/Bcl-2 ratio, demonstrating that the mitochondrial pathway is involved in the 2,4,6-TCP-induced apoptosis. Thus, these results show that 2,4,6-TCP induces oxidative stress, ER stress, and apoptosis, which together contribute to its cytotoxicity in vitro.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaona Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhidan Niu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Hou Y, Wang Y, Wang H, Xu Y. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: differential roles of mitogen-activated protein kinases. Toxicology 2014; 325:96-106. [PMID: 25201354 DOI: 10.1016/j.tox.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the specific activation of certain MAPK is different between acute and chronic arsenic exposure. Furthermore, it appears that during chronic arsenic exposure, GSH synthesis is regulated by p38 at least in part independent of NRF2.
Collapse
Affiliation(s)
- Yongyong Hou
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| | - Yi Wang
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| | - Huihui Wang
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China
| | - Yuanyuan Xu
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
19
|
Li CM, Li L, Wu J, Bai JY, Sun Y, Huang S, Wang GL. Upregulation of heat shock protein 32 with hemin alleviates acute heat-induced hepatic injury in mice. Cell Stress Chaperones 2014; 19:675-83. [PMID: 24473736 PMCID: PMC4147065 DOI: 10.1007/s12192-014-0495-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 32 (HSP32) is a stress response protein that can be induced by heat stress in the liver, and its induction can act as an important cellular defence mechanism against heat-induced liver injury. To investigate the functional role of HSP32 in protecting liver tissue against heat stress in mice and the mechanism by which it achieves this protective effect, HSP32 expression and carbon monoxide (CO) contents in a model of mice subjected to acute, transient heat exposure were examined. Furthermore, functional and histological parameters of liver damage and the possible involvement of oxidative stress to induce oxidative deterioration of liver functions and caspase-3 expression were also investigated in this study. We found that heat treatment of mice produced severe hepatic injury, whereas upregulation of HSP32 with hemin pretreatment prevented mice from liver damage. In contrast, addition of Sn-protoporphyrin (SnPP) to inhibit HSP32 expression completely reversed its hepatoprotective effect. It is concluded that upregulation of HSP32 by hemin could alleviate acute heat-induced hepatocellular damage in mice, and its by-product CO seems to play a more important role in hepatoprotective mechanism.
Collapse
Affiliation(s)
- Cheng-min Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jie Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing-yan Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Gen-lin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
20
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
21
|
Mani M, Golmohammadi T, Khaghani S, Zamani Z, Azadmanesh K, Meshkani R, Pasalar P. Homocysteine induces heme oxygenase-1 expression via transcription factor Nrf2 activation in HepG2 cell. IRANIAN BIOMEDICAL JOURNAL 2014; 17:93-100. [PMID: 23567851 DOI: 10.6091/ibj.1158.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcription factor Nrf2, a principal inducer of anti-oxidant and phase II-related genes. METHODS HepG2 cells were treated with homocysteine in different time periods. Glutathione content was measured by flowcytometry. Using electrophoretic mobility shift assay (EMSA) and Western-blotting, anti-oxidant response element (ARE)-binding activity of Nrf2 for heme ocygenase-1 (HO-1) was demonstrated. Real time RT-PCR and Western-blotting were performed to evaluate whether homocysteine was able to induce mRNA and protein expression of HO-1. RESULTS The role of Nrf2 in cellular response to homocysteine is substantiated by the following observations in HepG2 cells exposed to homocysteine (i) Western-blotting revealed that Nrf2 is strongly stabilized and became detectable in nuclear extracts. (ii) EMSA demonstrated increased binding of Nrf2 to oligomers containing HO-1 promoter-specific ARE-binding site. (iii) Real time RT-PCR and Western-blotting revealed increased mRNA and protein expression of inducible gene HO-1 after treatment with homocysteine. CONCLUSION Data presented in the current study provide direct evidence that the immediate cellular response to oxidative stress provoked by homocysteine is orchestrated mainly by the Nrf2-ARE pathway. Therefore, induction of Nrf2-ARE-dependent expression of HO-1 could be a therapeutic option for hepatic cells damage induced by homocysteine.
Collapse
Affiliation(s)
- Monireh Mani
- Dept. of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Taghi Golmohammadi
- Dept. of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shahnaz Khaghani
- Dept. of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Zamani
- Dept. of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Meshkani
- Dept. of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Parvin Pasalar
- Dept. of Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
The NRF2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells. PLoS One 2014; 9:e88069. [PMID: 24516582 PMCID: PMC3917856 DOI: 10.1371/journal.pone.0088069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/05/2014] [Indexed: 12/18/2022] Open
Abstract
Inorganic arsenic (iAs), a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min) and was responsive to low iAs concentrations (0.1 µM), this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs.
Collapse
|
23
|
Correlation between heat shock protein 32 and chronic heat-induced liver injury in developing mice. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Cordova EJ, Valenzuela OL, Sánchez-Peña LC, Escamilla-Guerrero G, Hernández-Zavala A, Orozco L, Razo LMD. Nuclear factor erythroid 2-related factor gene variants and susceptibility of arsenic-related skin lesions. Hum Exp Toxicol 2013; 33:582-9. [DOI: 10.1177/0960327113506234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inorganic arsenic (iAs) is an important pollutant associated with various chronic-degenerative diseases. The cytoprotective protein nuclear factor erythroid 2-related factor (NRF2) has been proposed as an important responsive mechanism against iAs exposure. The aim of this study was to determine whether the risk of skin lesions in people exposed to iAs-contaminated water could be modified by the presence of single nucleotide polymorphisms in the NRF2 coding gene. We studied 117 individuals with long-term iAs exposure and 120 nonexposed individuals. Total As was determined in water, meanwhile iAs and its metabolites were measured in urine. The iAs-induced skin lesion status was evaluated by expert dermatologists. We sequenced the promoter region of NRF2 in a sample of 120 healthy donors. We found four polymorphisms previously reported and one novel polymorphism in the 5′ regulatory region of the NRF2. In this study, we did not find allelic and genotype association of NRF2 polymorphisms with iAs-related skin lesion. However, the analysis of haplotypes composed by –653GA, and –617CA NRF2 single nucleotide polymorphisms showed a significant association with protection against skin lesions in the low-As exposure group. This is the first report studying the association between NRF2 polymorphisms and susceptibility of As-related skin lesions. Increasing the sample size will allow us to confirm this data.
Collapse
Affiliation(s)
- EJ Cordova
- Immunogenomics and Metabolic Diseases, National Institute of Genomic Medicine, Health Ministry, Mexico City, Mexico
| | - OL Valenzuela
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - LC Sánchez-Peña
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | | | - A Hernández-Zavala
- Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - L Orozco
- Immunogenomics and Metabolic Diseases, National Institute of Genomic Medicine, Health Ministry, Mexico City, Mexico
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - LM Del Razo
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| |
Collapse
|
25
|
Activation of the Nrf2 pathway by inorganic arsenic in human hepatocytes and the role of transcriptional repressor Bach1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:984546. [PMID: 23738048 PMCID: PMC3664501 DOI: 10.1155/2013/984546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/29/2023]
Abstract
Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE-) luciferase activity. Both the mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1) from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.
Collapse
|
26
|
Liu S, Guo X, Zhang X, Cui Y, Zhang Y, Wu B. Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3432-3438. [PMID: 23473362 DOI: 10.1021/es400176m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Removing arsenic (As) from drinking water is widely dependent on iron (Fe)-based coagulation/flocculation techniques. However, little is known about the influence of Fe precipitant on As toxicity. In this present study, the influence of Fe on As toxicity was determined at systems biology level by in vitro and in vivo experiments. In vitro study based on HepG2 cell line found that Fe increased the As toxicity on cell viability and DNA damage, indicating the synergetic toxic effects. However, when the Fe and As were simultaneously exposed to mice by drinking water for 90 days, the results showed that Fe reduced the changes of hepatic transcriptomic profiles and serum and urine metabolic profiles caused by As exposure, showing the antagonistic toxic effects. The antagonistic effects might be because Fe reduced As bioavailability and accumulation, which was verified by As and Fe levels in feces and liver. The results of this study indicate that Fe precipitant can influence the As toxicity. The interactions between As and Fe and their bioavailability might play important roles in the As toxicity. When assessing the safety of As in drinking water, it is necessary to fully consider the combined effects of As and Fe.
Collapse
Affiliation(s)
- Su Liu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Lau A, Whitman SA, Jaramillo MC, Zhang DD. Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. J Biochem Mol Toxicol 2012. [PMID: 23188707 DOI: 10.1002/jbt.21463] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arsenic is present in the environment and has become a worldwide health concern due to its toxicity and carcinogenicity. However, the specific mechanism(s) by which arsenic elicits its toxic effects has yet to be fully elucidated. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been recognized as the master regulator of a cellular defense mechanism against toxic insults. This review highlights studies demonstrating that arsenic activates the Nrf2-Keap1 antioxidant pathway by a distinct mechanism from that of natural compounds such as sulforaphane (SF) found in broccoli sprouts or tert-butylhyrdoquinone (tBHQ), a natural antioxidant commonly used as a food preservative. Evidence also suggests that arsenic prolongs Nrf2 activation and may mimic constitutive activation of Nrf2, which has been found in several human cancers due to disruption of the Nrf2-Keap1 axis. The current literature strongly suggests that activation of Nrf2 by arsenic potentially contributes to, rather than protects against, arsenic toxicity and carcinogenicity. The mechanism(s) by which known Nrf2 activators, such as the natural chemopreventive compounds SF and lipoic acid, protect against the deleterious effects caused by arsenic will also be discussed. These findings will provide insight to further understand how arsenic promotes a prolonged Nrf2 response, which will lead to the identification of novel molecular markers and development of rational therapies for the prevention or intervention of arsenic-induced diseases. The National Institute of Environmental Health Science (NIEHS) Outstanding New Environmental Scientist (ONES) award has provided the opportunity to review the progress both in the fields of arsenic toxicology and Nrf2 biology. Much of the funding has led to (1) the novel discovery that arsenic activates the Nrf2 pathway by a mechanism different to that of other Nrf2 activators, such as sulforaphane and tert-butylhydroquinone, (2) activation of Nrf2 by chemopreventive compounds protects against arsenic toxicity and carcinogenicity both in vitro and in vivo, (3) constitutive activation of Nrf2 by disrupting Keap1-mediated negative regulation contributes to cancer and chemoresistance, (4) p62-mediated sequestration of Keap1 activates the Nrf2 pathway, and (5) arsenic-mediated Nrf2 activation may be through a p62-dependent mechanism. All of these findings have been published and are discussed in this review. This award has laid the foundation for my laboratory to further investigate the molecular mechanism(s) that regulate the Nrf2 pathway and how it may play an integral role in arsenic toxicity. Moreover, understanding the biology behind arsenic toxicity and carcinogenicity will help in the discovery of potential strategies to prevent or control arsenic-mediated adverse effects.
Collapse
Affiliation(s)
- Alexandria Lau
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
28
|
Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Arch Toxicol 2012; 87:383-96. [PMID: 22914984 DOI: 10.1007/s00204-012-0920-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Arsenic is a ubiquitous toxic metalloid whose natural leaching from geogenic resources of earths crust into groundwater has become a dreadful health hazard to millions of people across the globe. Arsenic has been documented as a top most potent human carcinogen by Agency of Toxic Substances and Disease Registry. There have been a number of schools of opinions regarding the underlying mechanism of arsenic-induced carcinogenicity, but the theory of oxidative stress generated by arsenic has gained much importance. Imbalance in the cellular redox state and its associated complications have been closely associated with nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic-leucine zipper transcription factor that activates the antioxidant responsive element and electrophilic responsive element, thereby upregulating the expression of a variety of downstream genes. This review has been framed on the lines of differential molecular responses of Nrf2 on arsenic exposure as well as the chemopreventive strategy which may be improvised to regulate Nrf2 in order to combat arsenic-induced oxidative stress and its long-term carcinogenic effect.
Collapse
|
29
|
Ratushny AV, Saleem RA, Sitko K, Ramsey SA, Aitchison JD. Asymmetric positive feedback loops reliably control biological responses. Mol Syst Biol 2012; 8:577. [PMID: 22531117 PMCID: PMC3361002 DOI: 10.1038/msb.2012.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023] Open
Abstract
Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.
Collapse
Affiliation(s)
- Alexander V Ratushny
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Ramsey A Saleem
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Katherine Sitko
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Stephen A Ramsey
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| |
Collapse
|
30
|
Chavan H, Oruganti M, Krishnamurthy P. The ATP-binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol Sci 2011; 120:519-28. [PMID: 21266531 DOI: 10.1093/toxsci/kfr008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arsenic, an environmental carcinogen, remains a major public health problem. Arsenic damages biological systems through multiple mechanisms, including the generation of reactive oxygen species. ABCB6 is an ATP-binding cassette transporter that is highly expressed in cells resistant to arsenic. We have recently demonstrated that ABCB6 expression protects against cellular stressors. In the present study, we evaluated the significance of ABCB6 expression to arsenic toxicity both in mice and in cell culture. We show that sodium arsenite induces ABCB6 expression in a dose-dependent manner both in mice fed sodium arsenite in drinking water and in cells exposed to sodium arsenite in vitro. Arsenite-induced ABCB6 expression was transcriptionally regulated, but this induction was not mediated by the redox-sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2). We demonstrate that, in HepG2 and Hep3B cells, knockdown of ABCB6 expression using ABCB6-specific small interfering RNA sensitized the cells to arsenite toxicity. In contrast, stable overexpression of ABCB6 conferred a strong survival advantage toward arsenite-induced oxidative stress. Collectively, these results, obtained by both loss of function and gain of function analysis, suggest that ABCB6 expression in response to sodium arsenite might be an endogenous protective mechanism activated to protect cells against arsenite-induced oxidative stress.
Collapse
Affiliation(s)
- Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
31
|
Toyama T, Shinkai Y, Sumi D, Kumagai Y. Carbon monoxide derived from heme oxygenase-2 mediates reduction of methylmercury toxicity in SH-SY5Y cells. Toxicol Appl Pharmacol 2010; 249:86-90. [DOI: 10.1016/j.taap.2010.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/17/2010] [Accepted: 08/21/2010] [Indexed: 11/16/2022]
|