1
|
Kumagai Y, Abiko Y, Akiyama M, Unoki T, Shinkai Y. Multi-defense pathways against electrophiles through adduct formation by low molecular weight substances with sulfur atoms. Toxicol Sci 2025; 203:1-10. [PMID: 39374550 DOI: 10.1093/toxsci/kfae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
There is a variety of electrophiles in the environment. In addition, there are precursor chemicals that undergo metabolic activation by enzymes and conversion to electrophiles in the body. Although electrophiles covalently bind to protein nucleophiles, they also form adducts associated with adaptive or toxic responses. Low molecular weight compounds containing sulfur are capable of blocking such adduct formation by capturing the electrophiles. In this review, we present our findings on the capture and inactivation of electrophiles by: (i) intracellular glutathione, (ii) reactive sulfur species, and (iii) extracellular cysteine (formed during the production of sulfur adducts). These actions not only substantially suppress electrophilic activity but also regulate protein adduct formation.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Chen R, Liu H, Meng W, Sun J. Analysis of action of 1,4-naphthoquinone scaffold-derived compounds against acute myeloid leukemia based on network pharmacology, molecular docking and molecular dynamics simulation. Sci Rep 2024; 14:21043. [PMID: 39251712 PMCID: PMC11385794 DOI: 10.1038/s41598-024-70937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Lishui People's Hospital, Lishui, 323000, China
| | - Hengfang Liu
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Weikang Meng
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Jingyu Sun
- Department of Hematology Oncology, Taizhou Municipal Hospital, Taizhou, 318000, China.
| |
Collapse
|
3
|
Matsuo K, Abiko Y, Yamano S, Matsusue K, Kumagai Y. Activation of HSP90/HSF1 Signaling as an Adaptive Response to an Electrophilic Metabolite of Morphine. Biol Pharm Bull 2023; 46:334-337. [PMID: 36724961 DOI: 10.1248/bpb.b22-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols, resulting in toxicity in vitro and in vivo. We have previously identified a variety of redox signaling pathways that are activated during electrophilic stress. However, the role of MO in such activation remains unknown. In this study, we examined whether MO could activate heat shock protein (HSP) 90/heat shock factor (HSF) 1 signaling in HepG2 cells. MO exposure caused S-modification of HSP90 (determined using biotin-PEAC5-maleimide labeling) and nuclear translocation of transcription factor HSF1, thereby up-regulating its downstream genes encoding B-cell lymphoma 2-associated anthanogene 3 and heat shock 70 kDa protein 1. However, dihydromorphinone, a non-electrophilic metabolite of morphine, had little effect on HSF1 activation or upregulation of these genes, suggesting that covalent modification plays a role in this process and that the HSP90/HSF1 pathway is a redox-signaled adaptive response to morphine metabolism.
Collapse
Affiliation(s)
- Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University
| | - Yumi Abiko
- Faculty of Medicine, University of Tsukuba.,Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | |
Collapse
|
4
|
Shinkai Y, Onose Y, Akiyama M, Hirose R, Kumagai Y. Capture of Electrophilic Quinones in the Extracellular Space: Evidence for a Phase Zero Reaction. Chem Res Toxicol 2023; 36:23-31. [PMID: 36525601 DOI: 10.1021/acs.chemrestox.2c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic quinones are produced during the combustion of gasoline in the atmosphere. Although these reactive species covalently bind to protein-based nucleophiles in cells, resulting in the formation of protein adducts involved in the modulation of redox signaling pathways and cytotoxicity, the extracellular regulation of quinones is not understood. In this study, incubation of 1,2-naphthoquinone (1,2-NQ) with the low-molecular-weight fraction of mouse plasma resulted in the consumption of cysteine (CysSH) in the plasma in a concentration-dependent manner. Covalent modification of albumin was markedly repressed by the addition of either the low-molecular-weight fraction of mouse plasma or CysSH, suggesting that CysSH protects by forming a conjugate with 1,2-NQ. Similar phenomena also occurred for other atmospheric quinones 1,4-NQ and 1,4-benzoquinone (1,4-BQ). The addition of cystine to a culture medium without amino acids enhanced the release of CysSH from A431 cells and blocked 1,2-NQ-mediated arylation of intracellular proteins, suggesting that 1,2-NQ interacts with extracellular CysSH. Liquid chromatography-tandem mass spectrometry analysis revealed that 1,2-NQ and 1,4-BQ undergoes nucleophilic attack by CysSH, yielding a 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct, respectively. Unlike 1,2-NQ and 1,4-BQ, the authentic 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct had little effect on the covalent modification of cellular proteins and viability of A431 cells. These results suggest that electrophilic quinones are readily trapped by CysSH released from A431 cells, forming less-toxic CysSH adducts and thereby repressing covalent modification of cellular proteins. These findings provide evidence for the existence of a "phase zero" reaction of electrophiles prior to their uptake by cells.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Onose
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reiko Hirose
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Abiko Y, Kurosawa K, Yamakawa H, Kumagai Y. Activation of PTP1B/EGFR signaling and cytotoxicity during combined exposure to ambient electrophiles in A431 cells. J Toxicol Sci 2021; 46:177-185. [PMID: 33814511 DOI: 10.2131/jts.46.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chemical modification of the thiol group on protein tyrosine phosphatase (PTP) 1B triggers an activation of epidermal growth factor receptor (EGFR) signaling that is mimicked by environmental electrophiles through S-modification of PTP1B. While activation of PTP1B/EGFR by a single exposure to an electrophile has been established, the effects of combined exposure to electrophiles are unknown. Here, we examined the activation of EGFR signaling by combined exposure to ambient electrophiles in human epithelial carcinoma A431 cells. Simultaneous exposure to 1,2- and 1,4-naphthoquinone (NQ) augmented the S-modification of endogenous and recombinant human PTP1B (hPTP1B). Combined exposure of hPTP1B or A431 cells to 1,2- and 1,4-NQ escalated the inactivation of PTP compared with individual exposure. Phosphorylation of EGFR and its downstream kinase extracellular signal-regulated kinase (ERK) 1/2 by 1,2-NQ exposure was facilitated by simultaneous exposure to 1,2-NQ with 10 µM 1,4-NQ. An EGFR inhibitor diminished the phosphorylation of ERK1/2, indicating that ERK was phosphorylated following EGFR activation by the NQ cocktail. The combined exposure to NQs also accelerated cell death in A431 cells compared with each NQ alone. While no EGFR/ERK activation was seen following 1,4-benzoquinone (BQ) treatment, exposure to 1,4-NQ in the presence of 1,4-BQ increased 1,4-NQ-mediated activation of EGFR. This suggests that the enhancement of 1,4-NQ-dependent EGFR activation by 1,4-BQ is caused by a different mechanism than 1,2-NQ with 1,4-NQ. These results suggest that combined exposure to ambient electrophiles, even at low concentrations, can induce stronger activation of redox signaling than individual exposure. Our findings indicate that combining different electrophiles may produce unexpected effects.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | - Kohki Kurosawa
- Master's Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Hiroto Yamakawa
- Master's Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba.,Master's Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
6
|
Kumagai Y, Akiyama M, Unoki T. Adaptive Responses to Electrophilic Stress and Reactive Sulfur Species as their Regulator Molecules. Toxicol Res 2019; 35:303-310. [PMID: 31636841 PMCID: PMC6791667 DOI: 10.5487/tr.2019.35.4.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
We are exposed to numerous xenobiotic electrophiles on a daily basis through the environment, lifestyle, and dietary habits. Although such reactive species have been associated with detrimental effects, recent accumulated evidence indicates that xenobiotic electrophiles appear to act as signaling molecules. In this review, we introduce our findings on 1) activation of various redox signaling pathways involved in cell proliferation, detoxification/excretion of electrophiles, quality control of cellular proteins, and cell survival during exposure to xenobiotic electrophiles at low concentrations through covalent modification of thiol groups in sensor proteins, and 2) negative regulation of reactive sulfur species (RSS) in the modulation of redox signaling and toxicity caused by xenobiotic electrophiles.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
7
|
Kumagai Y, Abiko Y, Cong NL. Chemical toxicology of reactive species in the atmosphere: two decades of progress in an electron acceptor and an electrophile. J Toxicol Sci 2017; 41:SP37-SP47. [PMID: 28003638 DOI: 10.2131/jts.41.sp37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Air pollutants such as diesel exhaust particles (DEP) are thought to cause pulmonary diseases such as asthma as a result of oxidative stress. While DEP contain a large number of polycyclic aromatic hydrocarbons, we have focused on 9,10-phenanthrenequinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ) because of their chemical properties based on their oxidative and chemical modification capabilities. We have found that 9,10-PQ interacts with electron donors such as NADPH (in the presence of enzymes) and dithiols, resulting in generation of excess reactive oxygen species (ROS) through redox cycling. We have also shown that 1,2-NQ is able to modify protein thiols, leading to protein adducts associated with activation of redox signal transduction pathways at lower concentrations and toxicity at higher concentrations. In this review, we briefly introduce our findings from the last two decades.
Collapse
|
8
|
Polysulfide Na 2S 4 regulates the activation of PTEN/Akt/CREB signaling and cytotoxicity mediated by 1,4-naphthoquinone through formation of sulfur adducts. Sci Rep 2017; 7:4814. [PMID: 28684787 PMCID: PMC5500523 DOI: 10.1038/s41598-017-04590-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/17/2017] [Indexed: 12/30/2022] Open
Abstract
Electrophiles can activate redox signal transduction pathways, through actions of effector molecules (e.g., kinases and transcription factors) and sensor proteins with low pKa thiols that are covalently modified. In this study, we investigated whether 1,4-naphthoquinone (1,4-NQ) could affect the phosphatase and tensin homolog (PTEN)–Akt signaling pathway and persulfides/polysulfides could modulate this adaptive response. Simultaneous exposure of primary mouse hepatocytes to Na2S4 and 1,4-NQ markedly decreased 1,4-NQ-mediated cell death and S-arylation of cellular proteins. Modification of cellular PTEN during exposure to 1,4-NQ was also blocked in the presence of Na2S4. 1,4-NQ, at up to 10 µM, increased phosphorylation of Akt and cAMP response element binding protein (CREB). However, at higher concentrations, 1,4-NQ inhibited phosphorylation of both proteins. These bell-shaped dose curves for Akt and CREB activation were right-shifted in cells treated with both 1,4-NQ and Na2S4. Incubation of 1,4-NQ with Na2S4 resulted in formation of 1,4-NQ–S–1,4-NQ-OH. Unlike 1,4-NQ, authentic 1,4-NQ-S-1,4-NQ-OH adduct had no cytotoxicity, covalent binding capability nor ability to activate PTEN-Akt signaling in cells. Our results suggested that polysulfides, such as Na2S4, can increase the threshold of 1,4-NQ for activating PTEN–Akt signaling and cytotoxicity by capturing this electrophile to form its sulfur adducts.
Collapse
|
9
|
Abiko Y, Sha L, Shinkai Y, Unoki T, Luong NC, Tsuchiya Y, Watanabe Y, Hirose R, Akaike T, Kumagai Y. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Free Radic Biol Med 2017; 104:118-128. [PMID: 28049024 DOI: 10.1016/j.freeradbiomed.2016.12.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/08/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Liang Sha
- Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukihiro Tsuchiya
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Yasuo Watanabe
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Reiko Hirose
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
10
|
Kumagai Y, Abiko Y. Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides. Chem Res Toxicol 2016; 30:203-219. [DOI: 10.1021/acs.chemrestox.6b00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Abiko Y, Luong NC, Kumagai Y. A Biotin-PEAC 5-maleimide labeling assay to detect electrophiles. J Toxicol Sci 2015; 40:405-11. [DOI: 10.2131/jts.40.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | - Nho Cong Luong
- Master’s Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Master’s Program of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Faculty of Medicine, University of Tsukuba
| |
Collapse
|
12
|
Toyama T, Shinkai Y, Kaji T, Kumagai Y. A convenient method to assess chemical modification of protein thiols by electrophilic metals. J Toxicol Sci 2013; 38:477-84. [DOI: 10.2131/jts.38.477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takashi Toyama
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Research Fellow of the Japan Society for the Promotion of Science
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|