1
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
2
|
Ji Z, Settivari RS, LeBaron MJ. Pilot studies evaluating the nongenotoxic rodent carcinogens phenobarbital and clofibrate in the rat Pig-a assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:42-46. [PMID: 30338550 DOI: 10.1002/em.22232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Raja S Settivari
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| |
Collapse
|
3
|
Ji Z, LeBaron MJ. Applying the erythrocyte Pig-a assay concept to rat epididymal sperm for germ cell mutagenicity evaluation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:485-493. [PMID: 28714084 DOI: 10.1002/em.22109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Pig-a assay, a recently developed in vivo somatic gene mutation assay, is based on the identification of mutant erythrocytes that have an altered repertoire of glycosylphosphatidylinositol (GPI)-anchored cell surface markers. We hypothesized that the erythrocyte Pig-a assay concept could be applied to rat cauda epididymal spermatozoa (sperm) for germ cell mutagenicity evaluation. We used GPI-anchored CD59 as the Pig-a mutation marker and examined the frequency of CD59-negative sperm using flow cytometry. A reconstruction experiment that spiked un-labeled sperm (mutant-mimic) into labeled sperm at specific ratios yielded good agreement between the detected and expected frequencies of mutant-mimic sperm, demonstrating the analytical ability for CD59-negative sperm detection. Furthermore, this methodology was assessed in F344/DuCrl rats administered N-ethyl-N-nitrosourea (ENU), a prototypical mutagen, or clofibrate, a lipid-lowering drug. Rats treated with 1, 10, or 20 mg/kg body weight/day (mkd) ENU via daily oral garage for five consecutive days showed a dose-dependent increase in the frequency of CD59-negative sperm on study day 63 (i.e., 58 days after the last ENU dose). This ENU dosing regimen also increased the frequency of CD59-negative erythrocytes. In rats treated with 300 mkd clofibrate via daily oral garage for consecutive 28 days, no treatment-related changes were detected in the frequency of CD59-negative sperm on study day 85 (i.e., 57 days after the last dose) or in the frequency of CD59-negative erythrocytes on study day 29. In conclusion, these data suggest that the epidiymal sperm Pig-a assay in rats is a promising method for evaluating germ cell mutagenicity. Environ. Mol. Mutagen. 58:485-493, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| |
Collapse
|
4
|
Kyoya T, Hori M, Terada M. Evaluation of the in vivo mutagenicity of melamine by the RBC Pig-a assay and PIGRET assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:43-48. [PMID: 27931813 DOI: 10.1016/j.mrgentox.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The Pig-a assay is a new in vivo genotoxicity test for detecting mutagens in the bodies of animals, using the endogenous Pig-a gene as the target. There are two types of Pig-a assays: the red blood cell (RBC) Pig-a assay, which uses RBCs, and the PIGRET assay, which uses reticulocytes. The Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group collaborative study of the Pig-a assay was carried out to investigate the usefulness of the PIGRET assay. The mutagenicity of melamine was evaluated as part of this study. Eight-week-old male Crl:CD (SD) rats were administered a single gavage dose of melamine as a non-genotoxic bladder carcinogen. Blood samples were collected at the first, second and fourth weeks after administration, and the RBC Pig-a assay and PIGRET assays were conducted using these samples. Three dose levels were used in the study: the highest dose was 2000mg/kg, which is generally used as the maximum dose in in vivo genotoxicity testing, and 1000 and 500mg/kg were also used. As a positive control, a group of rats was administered a single dose of N-nitroso-N-ethylurea (ENU) by gavage at 40mg/kg. The Pig-a mutant frequencies (Pig-a MFs) did not increase in any of the melamine groups throughout the experimental period in either the RBC Pig-a assay or the PIGRET assay. Both the RBC Pig-a and PIGRET assays revealed significant increases in the Pig-a MFs in the ENU group, starting at day 7 after a single administration. Therefore, these two assays, when evaluated after a single administration, can be used to determine that melamine is non-mutagenic.
Collapse
Affiliation(s)
- Takahiro Kyoya
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan.
| | - Masami Hori
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| | - Megumi Terada
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| |
Collapse
|
5
|
Itoh S, Hattori C, Nakayama S, Hanamoto A. PIGRET assay can detect mutagenicity of ethyl methanesulfonate much earlier than RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:102-105. [PMID: 27931801 DOI: 10.1016/j.mrgentox.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The comparison between the original red blood cell (RBC) Pig-a assay, which measures Pig-a mutant RBCs, and the PIGRET assay, which uses reticulocytes, was conducted using in vivo mutagenesis by ethyl methanesulfonate (EMS) as a part of a collaborative study by the Mammalian Mutagenicity Study Group in the Japanese Environmental Mutagen Society. Three dose levels of EMS (180, 360, and 720mg/kg) were administered once by oral gavage to 8-week-old male Crl:CD(SD) rats, and peripheral blood was sampled at 0 (1 day before dosing), 1, 2, and 4 weeks after dosing with EMS. As a result, a statistically significant increase in the mutant frequency of the Pig-a gene was observed from 2 weeks after dosing and a higher value was obtained on week 4 at the highest dose only in the RBC Pig-a assay. In the PIGRET assay, on the other hand, a statistically significant increase in Pig-a mutant frequency was obtained at the highest dose from 1 week after dosing, and it decreased on weeks 2 and 4 compared to the value at week 1. The Pig-a mutant frequency appeared to reach a plateau 1 week after dosing in the PIGRET assay and it might continue to increase even after week 4 in the RBC Pig-a assay. These results indicate that the PIGRET assay can detect Pig-a mutants much earlier than the original RBC Pig-a assay, and it can enable judgement of mutagenicity of EMS within 1 week after a single dosing.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Chiharu Hattori
- Biologics Pharmacology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shiho Nakayama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Akiharu Hanamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
6
|
Evaluation of in vivo gene mutation with etoposide using Pig-a and PIGRET assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:29-34. [DOI: 10.1016/j.mrgentox.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022]
|
7
|
Luijten M, Olthof ED, Hakkert BC, Rorije E, van der Laan JW, Woutersen RA, van Benthem J. An integrative test strategy for cancer hazard identification. Crit Rev Toxicol 2016; 46:615-39. [PMID: 27142259 DOI: 10.3109/10408444.2016.1171294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.
Collapse
Affiliation(s)
- Mirjam Luijten
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Betty C Hakkert
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Emiel Rorije
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | | | - Ruud A Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , the Netherlands
| | - Jan van Benthem
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
8
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
9
|
Pu J, Deng Y, Tan X, Chen G, Zhu C, Qi N, Wen H, Guo J, Wang X, Qiu Y, Liang J, Fu X, Hu Y, Song J, Geng X, Wang C, Zhang L, Huang Z, Li B, Wang X. The in vivo Pig-a gene mutation assay is applied to study the genotoxicity of procarbazine hydrochloride in Sprague-Dawley rats. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jiang Pu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Yuanyuan Deng
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- National Centre for Safety Evaluation of Drugs, China
| | - Xiaoyan Tan
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Gaofeng Chen
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Cong Zhu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
- Sun Yat-sen University, China
| | - Naisong Qi
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Hairuo Wen
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Jun Guo
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xin Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | | | | | | | - Yanping Hu
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Jie Song
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xingchao Geng
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Chao Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Lin Zhang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | | | - Bo Li
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| | - Xue Wang
- National Centre for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China
| |
Collapse
|
10
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
11
|
Dertinger SD, Avlasevich SL, Torous DK, Bemis JC, Phonethepswath S, Labash C, Carlson K, Mereness J, Cottom J, Palis J, MacGregor JT. Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol Sci 2014; 140:307-14. [PMID: 24798381 DOI: 10.1093/toxsci/kfu078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.4 mg cisplatin/kg/day, and sampled on days -4, 15, 29, and 56. Vehicle and highest dose groups were evaluated at additional time points post-treatment up to 6 months. Day 4 and 29 blood samples were also analyzed for micronucleated reticulocyte frequency using flow cytometry and anti-CD71-based labeling. Mutant phenotype reticulocytes were significantly elevated at doses ≥0.1 mg/kg/day, and mutant phenotype erythrocytes were elevated at doses ≥0.05 mg/kg/day. In the 0.4 mg/kg/day group, these effects persisted for the 6 month observation period. Cisplatin also induced a modest but statistically significant increase in micronucleus frequency at the highest dose tested. The prolonged persistence in the production of mutant erythrocytes following cisplatin exposure suggests that this drug mutates hematopoietic stem cells and that this damage may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James Palis
- Department of Pediatrics and Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
12
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Cottom J, Bemis JC, Macgregor JT. Pig-a gene mutation and micronucleated reticulocyte induction in rats exposed to tumorigenic doses of the leukemogenic agents chlorambucil, thiotepa, melphalan, and 1,3-propane sultone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:299-308. [PMID: 24449360 DOI: 10.1002/em.21846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3-propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN-RET were determined at Days 4 and 29, and RET(CD59-) and RBC(CD59-) data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose-related increases were observed for each endpoint, and time to maximal effect was consistently: MN-RET < RET(CD59-) < RBC(CD59-) . For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig-a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood-based analyses to provide dose-response and temporality information that relates genetic damage to cancer induction.
Collapse
|
13
|
Ohtani S, Ushiyama A, Ootsuyama A, Kunugita N. Persistence of red blood cells with Pig-a mutation in p53 knockout mice exposed to X-irradiation. J Toxicol Sci 2014; 39:7-14. [DOI: 10.2131/jts.39.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shin Ohtani
- Department of Environmental Health, National Institute of Public Health
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, University of Occupational and Environmental Health
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health
| |
Collapse
|
14
|
Muto S, Yamada K, Kato T, Iwase Y, Uno Y. Pig-a Gene Mutation and Micronucleus Induction in Rat Peripheral Blood by Methyl Methanesulfonate. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Kimoto T, Chikura S, Suzuki-Okada K, Kobayashi X, Itano Y, Miura D, Kasahara Y. The Rat Pig-a Mutation Assay in Single and 28 Day-repeated Dose Study of Cyclophosphamide: The PIGRET Assay Can Detect the In Vivo Mutagenicity Earlier than the RBC Pig-a Assay. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Itoh S, Nagata M, Hattori C, Takasaki W. In Vivo Mutagenicity of Ethyl Methanesulfonate Detected by Pig-a and PIGRET Assays. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Kimoto T, Horibata K, Chikura S, Hashimoto K, Itoh S, Sanada H, Muto S, Uno Y, Yamada M, Honma M. Interlaboratory trial of the rat Pig-a mutation assay using an erythroid marker HIS49 antibody. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:126-34. [DOI: 10.1016/j.mrgentox.2013.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
|
18
|
Bhalli JA, Shaddock JG, Pearce MG, Dobrovolsky VN. Sensitivity of the Pig-a assay for detecting gene mutation in rats exposed acutely to strong clastogens. Mutagenesis 2013; 28:447-55. [PMID: 23677247 DOI: 10.1093/mutage/get022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clastogens are potential human carcinogens whose detection by genotoxicity assays is important for safety assessment. Although some endogenous genes are sensitive to the mutagenicity of clastogens, many genes that are used as reporters for in vivo mutation (e.g. transgenes) are not. In this study, we have compared responses in the erythrocyte Pig-a gene mutation assay with responses in a gene mutation assay that is relatively sensitive to clastogens, the lymphocyte Hprt assay, and in the reticulocyte micronucleus (MN) assay, which provides a direct measurement of clastogenicity. Male F344 rats were treated acutely with X-rays, cyclophosphamide (CP) and Cis-platin (Cis-Pt), and the frequency of micronucleated reticulocytes (MN RETs) in peripheral blood was measured 1 or 2 days later. The frequencies of CD59-deficient Pig-a mutant erythrocytes and 6-thioguanine-resistant Hprt mutant T-lymphocytes were measured at several times up to 16 weeks after the exposure. All three clastogens induced strong increases in the frequency of MN RETs, with X-rays and Cis-Pt producing near linear dose responses. The three agents also were positive in the two gene mutation assays although the assays detected them with different efficiencies. The Pig-a assay was more efficient in detecting the effect of Cis-Pt treatment, whereas the Hprt assay was more efficient for X-rays and CP. The results indicate that the erythrocyte Pig-a assay can detect the in vivo mutagenicity of clastogens although its sensitivity is variable in comparison with the lymphocyte Hprt assay.
Collapse
Affiliation(s)
- Javed A Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, HFT-120, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|