1
|
Mažylytė R, Kaziūnienė J, Orola L, Valkovska V, Lastauskienė E, Gegeckas A. Phosphate Solubilizing Microorganism Bacillus sp. MVY-004 and Its Significance for Biomineral Fertilizers' Development in Agrobiotechnology. BIOLOGY 2022; 11:biology11020254. [PMID: 35205120 PMCID: PMC8869773 DOI: 10.3390/biology11020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
In this study, a phosphate solubilizing microorganism was isolated from the soil of an agricultural field in Lithuania. Based on 16S rRNA gene sequence analysis, the strain was identified as Bacillus sp. and submitted to the NCBI database, Sector of Applied Bio-catalysis, University Institute of Biotechnology, Vilnius, Lithuania and allocated the accession number KY882273. The Bacillus sp. was assigned with the number MVY-004. The culture nutrient medium and growth conditions were optimized: molasses was used as a carbon source; yeast extract powder was used as an organic source; NH4H2PO4 was used as a nitrogen source; the culture growth temperature was 30 ± 0.5 °C; the initial value of pH was 7.0 ± 0.5; the partial pressure of oxygen (pO2) was 60 ± 2.0; the mixer revolutions per minute (RPM) were 25-850, and the incubation and the fermentation time was 48-50 h. Analysis using Liquid Chromatography Time-of-Flight Mass Spectrometry (LC-TOF/MS) results showed that Bacillus sp. MVY-004 produced organic acids such as citric, succinic, 2-ketogluconic, gluconic, malic, lactic, and oxalic acids. Furthermore, the experiment showed that Bacillus sp. MVY-004 can also produce the following phytohormones: indole-3-acetic (IAA), jasmonic (JA), and gibberellic (GA3) acids. In the climate chamber, the experiment was performed using mineral fertilizer (NPS-12:40:10 80 Kg ha-1) and mineral fertilizers in combination with Bacillus sp. MVY-004 cells (NPS-12:40:10 80 Kg ha-1 + Bacillus sp. MVY-004) in loamy soil. Analysis was performed in three climate conditions: normal (T = 20 °C; relative humidity 60%); hot and dry (T = 30 °C; relative humidity 30%); hot and humid (T = 30 °C; relative humidity 80%).
Collapse
Affiliation(s)
- Raimonda Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (E.L.); (A.G.)
- Correspondence:
| | - Justina Kaziūnienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania;
| | - Liana Orola
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia; (L.O.); (V.V.)
| | - Valda Valkovska
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia; (L.O.); (V.V.)
| | - Eglė Lastauskienė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (E.L.); (A.G.)
| | - Audrius Gegeckas
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (E.L.); (A.G.)
| |
Collapse
|
2
|
Tan L, Shao Y, Mu G, Ning S, Shi S. Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). BIORESOURCE TECHNOLOGY 2020; 295:122283. [PMID: 31669874 DOI: 10.1016/j.biortech.2019.122283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Enhancing Acid Red B (ARB) decolorization by growing cells of a halotolerant yeast Candida tropicalis SYF-1 with static magnetic field (SMF) was investigated. Activity of key enzymes and membrane phospholipid fatty acids (PLFAs) were analyzed for estimating the change of metabolic activity and membrane salt-stress response, respectively. Possible enhancement mechanisms were revealed through comparative transcriptome analysis. The results showed that 95.0 mT SMF enhanced ARB decolorization by growing cells of a yeast SYF-1, as well as cell growth and halotolerance capability. Activity of intracellular lignin peroxidase (LiP) and laccase (Lac) was 1.51- and 1.47-fold higher with 95.0 mT SMF than that without SMF, respectively. Unsaturation degree and chain length of dominant PLFAs was increased by 95.0 mT SMF treatment. Several functional protein encoding unigenes related to organics biodegradation, cell growth and halotolerance were 1.17- to 4.19-fold up-regulated in response to 95.0 mT SMF.
Collapse
Affiliation(s)
- Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Yifan Shao
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Guangdi Mu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shuxiang Ning
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
3
|
Irokawa H, Tachibana T, Watanabe T, Matsuyama Y, Motohashi H, Ogasawara A, Iwai K, Naganuma A, Kuge S. Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism Mediated by a Peroxidatic Cysteine of Peroxiredoxin. Sci Rep 2016; 6:33536. [PMID: 27634403 PMCID: PMC5025857 DOI: 10.1038/srep33536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
Peroxiredoxin is an abundant peroxidase, but its non-peroxidase function is also important. In this study, we discovered that Tsa1, a major peroxiredoxin of budding yeast cells, is required for the efficient flux of gluconeogenesis. We found that the suppression of pyruvate kinase (Pyk1) via the interaction with Tsa1 contributes in part to gluconeogenic enhancement. The physical interactions between Pyk1 and Tsa1 were augmented during the shift from glycolysis to gluconeogenesis. Intriguingly, a peroxidatic cysteine in the catalytic center of Tsa1 played an important role in the physical Tsa1-Pyk1 interactions. These interactions are enhanced by exogenous H2O2 and by endogenous reactive oxygen species, which is increased during gluconeogenesis. Only the peroxidatic cysteine, but no other catalytic cysteine of Tsa1, is required for efficient growth during the metabolic shift to obtain maximum yeast growth (biomass). This Tsa1 function is separable from the peroxidase function as an antioxidant. This is the first report to demonstrate that peroxiredoxin has a novel nonperoxidase function as a redox-dependent target modulator and that pyruvate kinase is modulated via an alternative mechanism.
Collapse
Affiliation(s)
- Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tsuyoshi Tachibana
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-0861, Japan
| | - Toshihiko Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yuka Matsuyama
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Ayako Ogasawara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Kenta Iwai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-0861, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
4
|
Boone CHT, Grove RA, Adamcova D, Braga CP, Adamec J. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics. Proteomics 2016; 16:1889-903. [PMID: 27193513 DOI: 10.1002/pmic.201500546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/19/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022]
Abstract
Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death.
Collapse
Affiliation(s)
- Cory H T Boone
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Ryan A Grove
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Dana Adamcova
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Camila P Braga
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA.,Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
| | - Jiri Adamec
- Redox Biology Center, Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
5
|
Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, Grondin V, Kienda G, Vernis L, Chanet R, Kolodner RD, Huang ME, Faye G. Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 2014; 9:e108123. [PMID: 25247923 PMCID: PMC4172583 DOI: 10.1371/journal.pone.0108123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a Can(R) mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the Can(R) mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.
Collapse
Affiliation(s)
- Sandrine Ragu
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Virginie Grondin
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine San Diego, La Jolla, California, United States of America
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| |
Collapse
|