1
|
Miyata M, Maeno K, Takagi R, Sugiura Y. Sodium alginate improves lipid disruption and alters the composition of the gut microbiota in farnesoid X receptor-null mice. Int J Food Sci Nutr 2025; 76:304-314. [PMID: 40024913 DOI: 10.1080/09637486.2025.2471106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Seaweed-derived dietary fibre sodium alginate (SA) has been shown to present with health benefits in food-derived disease models. To determine whether SA improves the disease rather than merely suppressing its progression, we assessed its effects using farnesoid X receptor (FXR)-deficient mice to provide a model of advanced hyperlipidaemia. Fxr-null mice were fed with a 5% SA-supplemented diet for nine weeks and showed significant decreases in the levels of liver triglycerides (p < 0.05), total cholesterol (p < 0.05), serum low-density lipoprotein-cholesterol (p < 0.001). The expression levels of fatty acid-synthesizing genes (Fas and Scd1) and cholesterol-metabolizing genes (Hmgcr, Hmgcs, and Abca1), were significantly reduced. Furthermore, the SA supplementation has altered the gut microbiota and significantly increased the abundance of the genus Oscillospira (p < 0.001) and Parabacteroides (p < 0.01). These results suggest that SA improves lipid disruption and influences the composition of the gut microbiota in the Fxr-null mice.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kouhei Maeno
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Reina Takagi
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
2
|
Joerg R, Itariu BK, Amor M, Bilban M, Langer F, Prager G, Joerg F, Stulnig TM. The effect of long-chain n-3 PUFA on liver transcriptome in human obesity. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102663. [PMID: 39752839 DOI: 10.1016/j.plefa.2024.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND AND AIMS Obesity is associated with a higher risk of severe diseases such as atherosclerotic cardiovascular disease, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Polyunsaturated fatty acids, of the omega-3 family (n-3 PUFA), have been shown to reduce adipose tissue inflammation in obesity, as well as to have lipid-lowering effects and improve insulin sensitivity. However, direct effects on liver transcriptome in humans have not been described. Our aim was to understand the impact of n-3 PUFA on gene expression in obese human liver. APPROACH AND RESULTS Patients with obesity (BMI ≥ 40 kg/m2) were treated for eight weeks with 3.36 g n-3 PUFAs (1.84 g eicosapentaenoic acid (EPA) and 1.53 g docosahexaenoic acid (DHA)), or with 5 g of butter as a control (n = 15 per group) before undergoing bariatric surgery where liver biopsies were taken. Liver samples were used for mRNA microarray analyses and subsequently Gene Set Enrichment Analysis (GSEA) was performed. This bioinformatic approach led us to identify 80 significantly dysregulated pathways that were divided into 9 different clusters including insulin and lipid metabolism, and immunity. N-3 PUFA treatment significantly affected pathways related to immunity, metabolism, and inflammation. Specifically, it upregulated pathways involved in T-cell and B-cell functions and lipid metabolism, while downregulating glucagon signalling. These findings highlight the impact of n-3 PUFAs on key metabolic and immune processes in the liver of patients with obesity. CONCLUSION This study provides further insights into the impact on n-3 PUFA on human liver gene expression, particularly in pathways associated with immunity, lipid metabolism, and inflammation, setting basis for further clinical research. SUMMARY Obesity increases the risk of diseases like atherosclerotic- cardiovascular disease, type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD). Omega-3 polyunsaturated fatty acids (n-3 PUFA) are known for their anti-inflammatory and metabolic benefits, but their direct impact on liver gene expression in people with obesity, remains unclear. In this study, patients with obesity (BMI ≥ 40 kg/m2) were administered either n-3 PUFAs or butter before bariatric surgery. Liver biopsies were analysed for gene expression via Gene Set Enrichment Analysis (GSEA). The results revealed 80 dysregulated pathways across 9 clusters, including those related to insulin and lipid metabolism, and immunity. This sheds light on how n-3 PUFAs influence gene expression in the liver of patients with obesity, setting the groundwork for further clinical exploration.
Collapse
Affiliation(s)
- Rebeka Joerg
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Bianca K Itariu
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Metabolism Centre N12 Antonigasse, 1090 Vienna, Austria.
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| | - Martin Bilban
- Department of Genomics, Medical University of Vienna, Austria.
| | - Felix Langer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Gerhard Prager
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria.
| | - Florian Joerg
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Austria.
| | - Thomas M Stulnig
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Department of Medicine III and Karl Landsteiner Institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna, Austria.
| |
Collapse
|
3
|
Miyata M, Takeda K, Nagira S, Sugiura Y. Trimethylamine N-oxide ameliorates hepatic damage including reduction of hepatic bile acids and cholesterol in Fxr-null mice. Int J Food Sci Nutr 2024; 75:385-395. [PMID: 38690724 DOI: 10.1080/09637486.2024.2346765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kento Takeda
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Sayuri Nagira
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
4
|
Laupsa-Borge J, Grytten E, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study. Front Nutr 2023; 10:1020678. [PMID: 37404855 PMCID: PMC10315503 DOI: 10.3389/fnut.2023.1020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Background Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration https://clinicaltrials.gov/, identifier [NCT02647333].
Collapse
Affiliation(s)
- Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N. Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Selenoneine Ameliorates Hepatocellular Injury and Hepatic Steatosis in a Mouse Model of NAFLD. Nutrients 2020; 12:nu12061898. [PMID: 32604760 PMCID: PMC7353312 DOI: 10.3390/nu12061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Selenoneine is a novel organic selenium compound markedly found in the blood, muscles, and other tissues of fish. This study aimed to determine whether selenoneine attenuates hepatocellular injury and hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). Mice lacking farnesoid X receptor (FXR) were used as a model for fatty liver disease, because they exhibited hepatomegaly, hepatic steatosis, and hepatic inflammation. Fxr-null mice were fed a 0.3 mg Se/kg selenoneine-containing diet for four months. Significant decreases in the levels of hepatomegaly, hepatic damage-associated diagnostic markers, hepatic triglycerides, and total bile acids were found in Fxr-null mice fed with a selenoneine-rich diet. Hepatic and blood clot total selenium concentrations were 1.7 and 1.9 times higher in the selenoneine group than in the control group. A marked accumulation of selenoneine was found in the liver and blood clot of the selenoneine group. The expression levels of oxidative stress-related genes (heme oxygenase 1 (Hmox1), glutathione S-transferase alpha 1 (Gsta1), and Gsta2), fatty acid synthetic genes (stearoyl CoA desaturase 1(Scd1) and acetyl-CoA carboxylase 1 (Acc1)), and selenoprotein (glutathione peroxidase 1 (Gpx1) and selenoprotein P (Selenop)) were significantly decreased in the selenoneine group. These results suggest that selenoneine attenuates hepatic steatosis and hepatocellular injury in an NAFLD mouse model.
Collapse
|
6
|
Miyata M, Funaki A, Fukuhara C, Sumiya Y, Sugiura Y. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease. J Toxicol Sci 2020; 45:87-94. [DOI: 10.2131/jts.45.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Akihiro Funaki
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Chiaki Fukuhara
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Yukino Sumiya
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| |
Collapse
|
7
|
Liu Y, Li Q, Wang H, Zhao X, Li N, Zhang H, Chen G, Liu Z. Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD. J Nutr Biochem 2019; 69:53-62. [PMID: 31055233 DOI: 10.1016/j.jnutbio.2019.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Our previous studies have found that fish oil rich in ω-3 polyunsaturated fatty acids (ω-3 PUFA) protects against non-alcoholic fatty liver disease (NAFLD) in mice. This study was aimed to explore the effects of fish oil on high fat diet (HFD)-induced circadian bile composition chaos. Male C57BL/6 mice were randomly divided into three groups, a control group (CON), a HFD group and a fish oil (FO) group, which were fed a normal chow diet, a HFD, and a HFD supplemented with FO, respectively for 12 weeks. At the end of the experiment, liver tissue, blood and bile samples were processed at 12-h intervals with the first one at zeitgeber time 0 (ZT0) and the second at zeitgeber time 12 (ZT12). Metabolites in bile were determined using UPLC-QTOF-MS, screened using multivariate statistical analysis, and analyzed using KEGG database and Metaboanalyst. The expression levels of key proteins in bile acid metabolism were examined using western blot. Results of biochemical analysis and H&E staining illustrated that feeding of HFD induced NAFLD, which was ameliorated in FO group. The bile content of each group at ZT0 (CON, HFD, or FO group) was respectively higher than that at ZT12 (P<.05). The metabolic pathway analysis of differential metabolites showed that these differences were correlated with amino acid metabolism, fatty acid biosynthesis and primary bile acid synthesis at ZT0. FO supplement could modify bile composition, which was related to the influence of its ω-3 PUFA on liver metabolism. ω-3 PUFA may also regulate the circadian rhythm of bile metabolism.
Collapse
Affiliation(s)
- Yang Liu
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Li
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hualin Wang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuju Zhao
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Li
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyu Zhang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, United States
| | - Zhiguo Liu
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
8
|
Lavallee CM, Lim DW, Wizzard PR, Mazurak VC, Mi S, Curtis JM, Willing BP, Yap JY, Wales PW, Turner JM. Impact of Clinical Use of Parenteral Lipid Emulsions on Bile Acid Metabolism and Composition in Neonatal Piglets. JPEN J Parenter Enteral Nutr 2018; 43:668-676. [PMID: 30137679 DOI: 10.1002/jpen.1437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neonates with intestinal failure dependent on parenteral nutrition (PN) are at risk of intestinal failure-associated liver disease (IFALD). PN lipid composition relates to the risk of IFALD, but the mechanisms are poorly understood. We investigated the effects of soybean oil (SO), a mixed-lipid (ML) emulsion containing fish oil (FO), and a pure FO. We hypothesized FO-containing PN lipids would result in increased gene expression of canalicular bile acid transporters and a larger, more hydrophilic bile acid pool, predictive of increased bile flow. METHODS Neonatal piglets were allocated to receive 1 of SO, ML, or FO throughout 14 days of PN feeding. Relative expression of genes involved in bile acid synthesis and transport were determined through quantitative polymerase chain reaction. Bile secreted from the liver was collected and measured. Bile acid composition was determined using tandem mass spectrometry. Regression analysis was used to determine predictors of bile flow. RESULTS PN reduced bile acid secretion (P < .001). FO-containing PN lipids were associated with greater expression of bile acid and organic solute transport genes (P < .05) and greater secretion of hydrophobic bile acids (P < .001). Farnesoid X receptor (P = .01), bile salt export pump (P < .01), multidrug resistant protein 2 (P < .01), and unconjugated hyocholic acid (P < .001) independently predicted bile flow. CONCLUSIONS PN lipid modulation altered bile acid metabolism and composition. These alterations may explain the hepatoprotective effects of FO-containing PN lipids and support their use in the prevention and treatment of IFALD.
Collapse
Affiliation(s)
- Celeste M Lavallee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David W Lim
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Si Mi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jason Y Yap
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|