1
|
Lu W, Liu Y, Guan R, Zhai Q, Liu X, Zhao W, An S, Li X. Effects of copper-based fungicides on the growth and tolerance of Helicoverpa armigera: implications for pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106297. [PMID: 40015889 DOI: 10.1016/j.pestbp.2025.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Heavy metal pollution, particularly from copper (Cu)-based fungicides, has emerged as a major environmental issue. The extensive and frequent use of these fungicides in agriculture, coupled with their persistent residues on plant surfaces, necessitates a comprehensive evaluation of their effects on surrounding organisms. This study specifically targets Helicoverpa armigera larvae to systematically evaluate changes in their viability and ecological fitness in response to excessive Cu2+ exposure by simulating field-relevant dosages of Cu-containing fungicides. The results indicate that, at the tested doses, excessive Cu2+ treatment had an insignificant impact on the developmental indices of H. armigera larvae. However, it significantly stimulated genetic expression and metabolic activity, notably enhancing the expression of trehalases and detoxification enzymes such as GST, CarE, and CYP450 across various tissues. This metabolic enhancement led to increased food intake in the larvae, thereby strengthening their tolerance to pesticides (azadirachtin, chlorfenapyr, and chlorantraniliprole) under both contact and ingestion toxicity. Moreover, the increased Cu2+ exposure reduced the parasitism rate, egg-laying capacity, and host preference of parasitic wasps. Further investigation revealed that H. armigera larvae primarily expel excess Cu through fecal excretion and molting. This study underscores the importance of evaluating the broader ecological impacts of Cu-based fungicides beyond their primary use for pathogen control. The findings provide essential insights into the mechanisms underlying the resurgence of H. armigera and offer theoretical guidance for the rational integration and application of fungicides and pest management strategies.
Collapse
Affiliation(s)
- Wenhui Lu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuhao Liu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing Zhai
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Montali A, Berini F, Gamberoni F, Armenia I, Saviane A, Cappellozza S, Gornati R, Bernardini G, Marinelli F, Tettamanti G. In Vivo Efficacy of a Nanoconjugated Glycopeptide Antibiotic in Silkworm Larvae Infected by Staphylococcus aureus. INSECTS 2024; 15:886. [PMID: 39590485 PMCID: PMC11595181 DOI: 10.3390/insects15110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against Staphylococcus aureus infection. B. mori larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
3
|
Wen H, Wang Y, Ji Y, Chen J, Xiao Y, Lu Q, Jiang C, Sheng Q, Nie Z, You Z. Effect of acute exposure of Hg on physiological parameters and transcriptome expression in silkworms ( Bombyx mori). Front Vet Sci 2024; 11:1405541. [PMID: 38919158 PMCID: PMC11196819 DOI: 10.3389/fvets.2024.1405541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Mercury (Hg) contamination poses a global threat to the environment, given its elevated ecotoxicity. Herein, we employed the lepidopteran model insect, silkworm (Bombyx mori), to systematically investigate the toxic effects of Hg-stress across its growth and development, histomorphology, antioxidant enzyme activities, and transcriptome responses. High doses of Hg exposure induced evident poisoning symptoms, markedly impeding the growth of silkworm larvae and escalating mortality in a dose-dependent manner. Under Hg exposure, the histomorphology of both the midgut and fat body exhibited impairments. Carboxylesterase (CarE) activity was increased in both midgut and fat body tissues responding to Hg treatment. Conversely, glutathione S-transferase (GST) levels increased in the fat body but decreased in the midgut. The transcriptomic analysis revealed that the response induced by Hg stress involved multiple metabolism processes. Significantly differently expressed genes (DEGs) exhibited strong associations with oxidative phosphorylation, nutrient metabolisms, insect hormone biosynthesis, lysosome, ribosome biogenesis in eukaryotes, and ribosome pathways in the midgut or the fat body. The findings implied that exposure to Hg might induce the oxidative stress response, attempting to compensate for impaired metabolism. Concurrently, disruptions in nutrient metabolism and insect hormone activity might hinder growth and development, leading to immune dysfunction in silkworms. These insights significantly advance our theoretical understanding of the potential mechanisms underlying Hg toxicity in invertebrate organisms.
Collapse
Affiliation(s)
- Huanhuan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongqiang Ji
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yao Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qixiang Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Miškovská A, Michailidu J, Kolouchová IJ, Barone L, Gornati R, Montali A, Tettamanti G, Berini F, Marinelli F, Masák J, Čejková A, Maťátková O. Biological activity of silver nanoparticles synthesized using viticultural waste. Microb Pathog 2024; 190:106613. [PMID: 38484919 DOI: 10.1016/j.micpath.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Ludovica Barone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Belal R, Gad A. Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the hemocytes of Bombyx mori larvae. Sci Rep 2023; 13:3520. [PMID: 36864109 PMCID: PMC9981692 DOI: 10.1038/s41598-023-30444-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The expanded uses of zinc oxide nanoparticles (ZnO-NPs) have grown rapidly in the field of nanotechnology. Thus, the increased production of nanoparticles (NPs) increases the potential risks to the environment and occupationally exposed humans. Hence, safety and toxicity assessment including genotoxicity of these NPs is indispensable. In the present study, we have evaluated the genotoxic effect of ZnO-NPs on 5th larval instar of Bombyx mori after feeding on mulberry leaves treated with ZnO-NPs at concentrations 50 and 100 μg/ml. Moreover, we evaluated its effects on total and different hemocyte count, antioxidant potential and catalase activity on the hemolymph of treated larvae. Results showed that ZnO-NPs at concentrations of 50 and 100 µg/ml have significantly decreased the total hemocyte count (THC) and different hemocyte count (DHC) except the number of oenocytes as they were significantly increased. Gene expression profile also showed up-regulation of GST, CNDP2 and CE genes suggesting increase in antioxidant activity and alteration in cell viability as well as cell signaling.
Collapse
Affiliation(s)
- Rania Belal
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
| | - Abir Gad
- Department of Applied Entomology and Zoology, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt.
| |
Collapse
|
6
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|
7
|
Liu Y, Yang C, Sun L, Wang A, Lan X, Xu W, Liang Y, Ma S, Xia Q. In-depth transcriptome unveils the cadmium toxicology and a novel metallothionein in silkworm. CHEMOSPHERE 2021; 273:128522. [PMID: 33066968 DOI: 10.1016/j.chemosphere.2020.128522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution has gradually become a major global issue. It is so far reaching in part because heavy metals are absorbed by soil and affect almost all species via ecological cycles. Silkworms (Bombyx mori) are poisoned by heavy metals through a soil-mulberry-silkworm system, which inhibits larval growth and development and leads to a decrease in silk production. In the present study, we performed transcriptome sequencing of larval midgut with cadmium exposure to explore the toxicological mechanism of heavy metal, and found that the following potential pathways may be involved in cadmium infiltration: endocytosis, oxidative phosphorylation, and MAPK signaling. Moreover, we identified a novel metallothionein in silkworm, which is inhibited by cadmium exposure and able to improve heavy metal tolerance in B. mori cell lines and Escherichia coli. We also generated a transgenic silkworm strain overexpressing metallothionein and the result showed that metallothionein observably enhanced larval viability under cadmium exposure. This study used RNA sequencing to reveal a mechanism for cadmium toxicology, and identified and functionally verified BmMT, offering a new potential heavy metal-tolerant silkworm variety.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Xinhui Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Wei Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Yan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Fometu SS, Wu G, Ma L, Davids JS. A review on the biological effects of nanomaterials on silkworm ( Bombyx mori). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:190-202. [PMID: 33614385 PMCID: PMC7884877 DOI: 10.3762/bjnano.12.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials, there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture.
Collapse
Affiliation(s)
- Sandra Senyo Fometu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Guohua Wu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Lin Ma
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Joan Shine Davids
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| |
Collapse
|