1
|
Zhou X, Liao J, Lei Z, Yao H, Zhao L, Yang C, Zu Y, Zhao Y. Nickel-based nanomaterials: a comprehensive analysis of risk assessment, toxicity mechanisms, and future strategies for health risk prevention. J Nanobiotechnology 2025; 23:211. [PMID: 40087769 PMCID: PMC11909927 DOI: 10.1186/s12951-025-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Nickel-based nanomaterials (NBNs) have seen a surge in usage across a variety of applications. However, the widespread use of NBNs has led to increased human exposure, raising questions about their associated health risks, both in the short and long term. Additionally, the spread of NBNs in the environment has attracted considerable attention, emerging as a vital focus for research and development. This review aims to provide an in-depth assessment of the current understanding of NBNs toxicity, the mechanisms underlying their toxicological effects, and the strategies for mitigating associated health risks. We begin by examining the physicochemical properties of NBNs, such as particle size, composition and surface functionalization, which are key determinants of their biological interactions and toxicity. Then, through an extensive analysis of in vitro and in vivo studies, we highlight the adverse effects of NBNs exposure, including the generation of reactive oxygen species (ROS), oxidative stress, inflammation, cytotoxicity, genotoxicity, and immunotoxicity. To address the potential health risks associated with NBNs, we propose future strategies for risk prevention, including the development of safer nanomaterial designs, implementation of stringent regulatory guidelines, and advancement of novel toxicity testing approaches.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaqi Liao
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zipeng Lei
- Clinical College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huiqin Yao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Le Zhao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chun Yang
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
2
|
Addai-Arhin S, Shino S, Uchida M, Ishibashi H, Arizono K, Tominaga N. Toxicity of nickel, copper, and selenium in medaka embryos (oryzias latipes): a comparative study. J Toxicol Sci 2025; 50:23-32. [PMID: 39779229 DOI: 10.2131/jts.50.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The indispensability of biometals nickel, copper, and selenium in pharmaceutical, agricultural, and other industrial applications, coupled with their release from mining processes, has made them potent environmental contaminants, especially when present in aquatic ecosystems at levels above the essential range. The toxicity of these biometals in fish embryogenesis, including their toxicity levels, was studied using medaka embryos. Test solutions (0.001-10 ppm) of the biometals, along with an isotonic solution as a control, were introduced into the embryos using a nanosecond pulsed electric field application. The exposed embryos were cultured at 25 ± 1°C and microscopically observed daily for 14 days in an isotonic solution. Developmental abnormalities and toxicity were observed during the 14-day observation period. All biometals caused some abnormalities in developing embryos at all concentrations. Major abnormalities included delayed development; deformities such as curvature of bones or spines; abnormal formation of the hearts, eyes, and circulatory systems; and mortality. The toxicity of the biometals was significantly different (p < 0.05) from that of the control. Gene expression analysis revealed that 4747, 1961, and 1952 genes were affected by copper, nickel, and selenium, respectively. Copper affected the highest number of genes and caused the highest toxicity. These results indicate that nickel, copper, and selenium can cause toxicity in developing fish embryos at concentrations ranging from 0.01 ppb to 10 ppm. Therefore, there is a need to constantly monitor the levels of these biometals, particularly in aquatic ecosystems, to preserve aquatic life.
Collapse
Affiliation(s)
- Sylvester Addai-Arhin
- Graduate School of Environmental and Symbiotic Sciences, Kumamoto Prefectural University
- Pharmaceutical Science Department, Faculty of Health Sciences, Kumasi Technical University, Ghana
| | - Seiya Shino
- Department of Creative engineering, National Institute of Technology, Ariake College
| | - Masaya Uchida
- Department of Creative engineering, National Institute of Technology, Ariake College
| | | | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Kumamoto Prefectural University
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Nobuaki Tominaga
- Department of Creative engineering, National Institute of Technology, Ariake College
| |
Collapse
|
3
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
5
|
Jurgelėnė Ž, Montvydienė D, Šemčuk S, Stankevičiūtė M, Sauliutė G, Pažusienė J, Morkvėnas A, Butrimienė R, Jokšas K, Pakštas V, Kazlauskienė N, Karabanovas V. The impact of co-treatment with graphene oxide and metal mixture on Salmo trutta at early development stages: The sorption capacity and potential toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156525. [PMID: 35679940 DOI: 10.1016/j.scitotenv.2022.156525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) are novel nanomaterials with a wide range of applications due to their high absorption capacity. This study was undertaken with a view to assess the bioaccumulation and acute toxicity of GO used in combination with the heavy metal mixture (Cr, Cu, Ni and Zn) to fish embryos and larvae. For this purpose, Salmo trutta embryos and larvae were subjected to the 4-day long treatment with three different concentrations of GO, the metal mixture, which was prepared of four metals at the concentrations corresponding to the maximum-permissible-concentrations for EU inland waters (Cr-0.01, Cu-0.01, Ni-0.034, and Zn-0.1 mg/L), and with GO in combination with MIX (GO+MIX). When used in combination with the metal mixture, GO exhibited a high metal sorption capacity. The obtained confocal fluorescence microscopy results showed that GO located in the embryo chorion causing its damage; in larvae, however, GO were found only in the gill region. Results of these experiments confirmed the hypothesis that GO affects the accumulation of metals and mitigates their toxic effects on organism. In embryos, the acute toxicity of exposure to GO and co-exposure to MIX+GO was found to manifest itself through the decreased heart rate (HR) and malondialdehyde (MDA) level and through the increased metallothionein (MT) concentration. Meanwhile, in larvae, GO and MIX+GO were found to induce genotoxicity effects. However, changes in HR, MDA, MT, gill ventilation frequency, yolk sack absorption and cytotoxicity compared with those of the control group were not recorded in larvae. The obtained results confirmed our hypothesis: the combined effect of MIX and GO was less toxic to larvae (especially survival) than individual effects of MIX components. However, our results emphasize that fish exposure to GO alone and in combination with heavy metal contaminants (MIX+GO) even at environmentally relevant concentrations causes health risks that cannot be ignored.
Collapse
Affiliation(s)
- Živilė Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania; Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania.
| | | | - Sergej Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | | | - Gintarė Sauliutė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Janina Pažusienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Augustas Morkvėnas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Renata Butrimienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius-21, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Vidas Pakštas
- SRI Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | | | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio St. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
6
|
Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116556. [PMID: 33588191 DOI: 10.1016/j.envpol.2021.116556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The public around the world is increasingly concerned about male reproductive health. The impact of nickel nanoparticles (Ni NPs) on male reproductive toxicity including sperm production, motility and fertilizing capacity has been confirmed by our previous researches. In the current study of Ni NPs-inducing toxicity, the expression profiles of piRNAs and their predicted target genes associated with male infertility, were obtained. The results showed that piR-mmu-32362259 was the highest differential expression multiples in both the testis tissues of male mice and GC-1 cells similarly. Notably, piR-mmu-32362259 target gene was significantly enriched in the PI3K-AKT signaling pathway. All these results suggest that piR-mmu-32362259 may affect the occurrence and development of injury in the mouse spermatogenesis process by regulating the PI3K-AKT signaling pathway. In order to verify the result, piR-mmu-32362259 low-expression lentivirus was used to transfect GC-1 cells to establish a stable transfected cell model. The effects of piR-mmu-32362259 on the viability, cycle and apoptosis as well as related protein expression levels of GC-1 cells induced by Ni NPs were detected using CCK8, flow cytometry and western blot assay, respectively. The results showed that low expression of piR-mmu-32362259 could not only alleviate the decrease of GC-1 cell viability, affect the cell cycle and reduce the apoptosis rate, but also significantly affect the expression levels of key proteins and their downstream molecules of PI3K/AKT/mTOR signaling pathway. Collectively, our current results provide a theoretical basis for further exploring the molecular regulatory mechanism of male reproductive toxicity induced by Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Lin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
7
|
Yang Y, Yu Y, Zhou R, Yang Y, Bu Y. The effect of combined exposure of zinc and nickel on the development of zebrafish. J Appl Toxicol 2021; 41:1765-1778. [PMID: 33645740 DOI: 10.1002/jat.4159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022]
Abstract
Excessive accumulation of Zn2+ or Ni2+ can cause various problems to aquatic animals. In this study, the developmental toxicity induced by individual or combined exposure of Zn2+ and Ni2+ to zebrafish embryos and larvae were evaluated to better understand the interaction between Zn2+ and Ni2+ . Both of individual and combined exposure of Zn2+ and Ni2+ could cause obvious developmental toxicity, which mainly occurred after hatching, at a concentration-dependent manner. The calculated 168-h LC50 were 2.79 mg/L for Zn2+ and 7.44 mg/L for Ni2+ . The interaction of Zn2+ and Ni2+ based on mortality was found to be an antagonism. Various malformations, including tail curving, spinal curvature, pericardial edema, and yolk sac edema, were observed with significant effects on body length and heartbeat rates after exposure of Zn2+ and Ni2+ . Meanwhile, some genes related to cardiovascular development and bone formation were mainly down-regulated by the individual and combined exposure of Zn2+ and Ni2+ . The individual exposure was more toxic than combined exposure because the interaction of Zn2+ and Ni2+ was determined to be an antagonism. The down-regulation of genes related to cardiovascular development and bone formation may contribute to the observed malformation and decreases of body length and heartbeat rates.
Collapse
Affiliation(s)
- Yongmeng Yang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
- Guangdong University of Technology, Synergy Innovation Institute of GDUT, Shantou, China
| | - Yue Yu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| | - Rong Zhou
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| | - Yan Yang
- Guangdong University of Technology, Synergy Innovation Institute of GDUT, Shantou, China
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|