1
|
Lesiak A, Wodz K, Ceryn J, Sobolewska-Sztychny D, Bednarski I, Piekarski J, Pabianek M, Nejc D, Dróżdż I, Narbutt J, Noweta M, Ciążyńska M. New insight into the role of the pathway NLRP1 and NLRP3 inflammasomes and IL-33 in ultraviolet-induced cutaneous carcinogenesis. Front Med (Lausanne) 2025; 11:1483208. [PMID: 39839625 PMCID: PMC11747519 DOI: 10.3389/fmed.2024.1483208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined. Purpose The objective of this study is to evaluate the expression of interleukin genes (IL-33, IL-18, IL-1β) following the activation and silencing of NLRP1 and NLRP3 at various wavelengths and doses of UV radiation, and to correlate these expressions with pertinent tumor markers (e.g., Gli1, Gli2, FOXO3A, SerpinA1, SerpinA3, and EphB2). Methods and materials Cultures of keratinocyte cell lines were exposed to varying doses of UV radiation using specific lamps. To inhibit the expression of NLRP1 and NLRP3 genes, cells were transfected with targeted siRNAs. Gene expression of inflammasome components and effector proteins was quantified using Real-time PCR and ELISA. Results There was a marked upregulation in the expression levels of cytokine genes IL-18, IL-1β, and IL-33 upon exposure to UVB and UVA radiation, compared to non-irradiated keratinocytes. Silencing NLRP1 or NLRP3 via RNA interference in primary human keratinocytes resulted in a significant reduction of cytokine gene expression. Additionally, a notable increase in tumor marker gene expression was observed in cells with functional NLRP1 and NLRP3 following UV radiation, whereas silencing these inflammasome genes altered the expression profiles of these markers. Conclusion This study provides a pioneering comprehensive assessment of the roles of NLRP1, NLRP3, and IL-33 in the pathogenesis of UV-induced cutaneous carcinogenesis. Our findings substantiate the role of IL-33 as a critical early danger signal elicited in response to inflammatory UV radiation, presumably regulated by inflammasomes.
Collapse
Affiliation(s)
- Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders Medical University of Łódź, Łódź, Poland
| | - Karolina Wodz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Brudzew, Poland
| | - Justyna Ceryn
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Dorota Sobolewska-Sztychny
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders Medical University of Łódź, Łódź, Poland
| | - Igor Bednarski
- Department of Neurology, Medical University of Lodz, Łódź, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Central Teaching Hospital of the Medical University of Lodz, Łódź, Poland
| | - Marta Pabianek
- Chemotherapy Sub-Department and One-Day Chemotherapy Department, Specialist Oncological Hospital NU-MED sp. z o. o., Tomaszów Mazowiecki, Poland
| | - Dariusz Nejc
- Department of Surgical Oncology, Central Teaching Hospital of the Medical University of Lodz, Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Łódź, Poland
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Chemotherapy Sub-Department and One-Day Chemotherapy Department, Specialist Oncological Hospital NU-MED sp. z o. o., Tomaszów Mazowiecki, Poland
| |
Collapse
|
2
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Wang Q, Wen W, Zhou L, Liu F, Ren X, Yu L, Chen H, Jiang Z. LL-37 improves sepsis-induced acute lung injury by suppressing pyroptosis in alveolar epithelial cells. Int Immunopharmacol 2024; 129:111580. [PMID: 38310763 DOI: 10.1016/j.intimp.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND LL-37 (also known as murine CRAMP) is a human antimicrobial peptide that plays a crucial role in innate immune defence against sepsis through various mechanisms. However, its involvement in sepsis-induced lung injury remains unclear. OBJECTIVES This work investigates the impact of LL-37 on pyroptosis generated by LPS in alveolar epithelial cells. The research utilizes both in vivo and in vitro sepsis-associated acute lung injury (ALI) models to understand the underlying molecular pathways. METHODS In vivo, an acute lung injury model induced by sepsis was established by intratracheal administration of LPS in C57BL/6J mice, which were subsequently treated with low-dose CRAMP (recombinant murine cathelicidin, 2.5 mg.kg-1) and high-dose CRAMP (5.0 mg.kg-1). In vitro, pyroptosis was induced in a human alveolar epithelial cell line (A549) by stimulation with LPS and ATP. Treatment was carried out with recombinant human LL-37, or LL-37 was knocked out in A549 cells using small interfering RNA (siRNA). Subsequently, haematoxylin and eosin staining was performed to observe the histopathological changes in lung tissues in the control group and sepsis-induced lung injury group. TUNEL and PI staining were used to observe DNA fragmentation and pyroptosis in mouse lung tissues and cells in the different groups. An lactate dehydrogenase (LDH) assay was performed to measure the cell death rate. The expression levels of NLRP3, caspase1, caspase 1 p20, GSDMD, NT-GSDMD, and CRAMP were detected in mice and cells using Western blotting, qPCR, and immunohistochemistry. ELISA was used to assess the levels of interleukin (IL)-1β and IL-18 in mouse serum, bronchoalveolar lavage fluid (BALF) and lung tissue and cell culture supernatants. RESULTS The expression of NLRP3, caspase1 p20, NT-GSDMD, IL 18 and IL1β in the lung tissue of mice with septic lung injury was increased, which indicated activation of the canonical pyroptosis pathway and coincided with an increase in CRAMP expression. Treatment with recombinant CRAMP improved pyroptosis in mice with lung injury. In vitro, treatment with LPS and ATP upregulated these classic pyroptosis molecules, LL-37 knockdown exacerbated pyroptosis, and recombinant human LL-37 treatment alleviated pyroptosis in alveolar epithelial cells. CONCLUSION These findings indicate that LL-37 protects against septic lung injury by modulating the expression of classic pyroptotic pathway components, including NLRP3, caspase1, and GSDMD and downstream inflammatory factors in alveolar epithelial cells.
Collapse
Affiliation(s)
- Quanzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Wei Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lei Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China; Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Xiaoxu Ren
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Huanqin Chen
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| |
Collapse
|
4
|
He G, Yu W, Li H, Liu J, Tu Y, Kong D, Long Z, Liu R, Peng J, Wang Z, Liu P, Hai C, Yan W, Li W. Alpha-1 antitrypsin protects against phosgene-induced acute lung injury by activating the ID1-dependent anti-inflammatory response. Eur J Pharmacol 2023; 957:176017. [PMID: 37673367 DOI: 10.1016/j.ejphar.2023.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Phosgene is widely used as an industrial chemical, and phosgene inhalation causes acute lung injury (ALI), which may further progress into pulmonary edema. Currently, an antidote for phosgene poisoning is not known. Alpha-1 antitrypsin (α1-AT) is a protease inhibitor used to treat patients with emphysema who are deficient in α1-AT. Recent studies have revealed that α1-AT has both anti-inflammatory and anti-SARS-CoV-2 effects. Herein, we aimed to investigate the role of α1-AT in phosgene-induced ALI. We observed a time-dependent increase in α1-AT expression and secretion in the lungs of rats exposed to phosgene. Notably, α1-AT was derived from neutrophils but not from macrophages or alveolar type II cells. Moreover, α1-AT knockdown aggravated phosgene- and lipopolysaccharide (LPS)-induced inflammation and cell death in human bronchial epithelial cells (BEAS-2B). Conversely, α1-AT administration suppressed the inflammatory response and prevented death in LPS- and phosgene-exposed BEAS-2B cells. Furthermore, α1-AT treatment increased the inhibitor of DNA binding 1 (ID1) gene expression, which suppressed NF-κB pathway activation, reduced inflammation, and inhibited cell death. These data demonstrate that neutrophil-derived α1-AT acts as a self-protective mechanism, which protects against phosgene-induced ALI by activating the ID1-dependent anti-inflammatory response. This study may provide novel strategies for the treatment of patients with phosgene-induced ALI.
Collapse
Affiliation(s)
- Gaihua He
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongmei Tu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Deqin Kong
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an, 710032, China.
| | - Wenli Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Dun Y, Hu H, Liu F, Shao Y, He D, Zhang L, Shen J. PTTG1 promotes CD34+CD45+ cells to repair the pulmonary vascular barrier via activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway in rats with phosgene-induced acute lung injury. Biomed Pharmacother 2023; 162:114654. [PMID: 37018988 DOI: 10.1016/j.biopha.2023.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Accidental exposure to phosgene can cause acute lung injury (ALI), characterized by uncontrolled inflammation and impaired lung blood-gas barrier. CD34+CD45+ cells with high pituitary tumor transforming gene 1 (PTTG1) expression were identified around rat pulmonary vessels through single-cell RNA sequencing, and have been shown to attenuate P-ALI by promoting lung vascular barrier repair. As a transcription factor closely related to angiogenesis, whether PTTG1 plays a role in CD34+CD45+ cell repairing the pulmonary vascular barrier in rats with P-ALI remains unclear. This study provided compelling evidence that CD34+CD45+ cells possess endothelial differentiation potential. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells transfected with or without PTTG1-overexpressing and sh-PTTG1 lentivirus. It was found that CD34+CD45+ cells reduced the pulmonary vascular permeability and mitigated the lung inflammation, which could be reversed by knocking down PTTG1. Although PTTG1 overexpression enhanced the ability of CD34+CD45+ cells to attenuate P-ALI, no significant difference was found. PTTG1 was found to regulate the endothelial differentiation of CD34+CD45+ cells. In addition, knocking down of PTTG1 significantly reduced the protein levels of VEGF and bFGF, as well as their receptors, which in turn inhibited the activation of the PI3K/AKT/eNOS signaling pathway in CD34+CD45+ cells. Moreover, LY294002 (PI3K inhibitor) treatment inhibited the endothelial differentiation of CD34+CD45+ cells, while SC79 (AKT activator) yielded the opposite effect. These findings suggest that PTTG1 can promote the endothelial differentiation of CD34+CD45+ cells by activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway, leading to the repair of the pulmonary vascular barrier in rats with P-ALI.
Collapse
|
6
|
Cao C, Memet O, Liu F, Hu H, Zhang L, Jin H, Cao Y, Zhou J, Shen J. Transcriptional Characterization of Bronchoalveolar Lavage Fluid Reveals Immune Microenvironment Alterations in Chemically Induced Acute Lung Injury. J Inflamm Res 2023; 16:2129-2147. [PMID: 37220504 PMCID: PMC10200123 DOI: 10.2147/jir.s407580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Chemically induced acute lung injury (CALI) has become a serious health concern in our industrialized world, and abnormal functional alterations of immune cells crucially contribute to severe clinical symptoms. However, the cell heterogeneity and functional phenotypes of respiratory immune characteristics related to CALI remain unclear. Methods We performed scRNA sequencing on bronchoalveolar lavage fluid (BALF) samples obtained from phosgene-induced CALI rat models and healthy controls. Transcriptional data and TotalSeq technology were used to confirm cell surface markers identifying immune cells in BALF. The landscape of immune cells could elucidate the metabolic remodeling mechanism involved in the progression of acute respiratory distress syndrome and cytokine storms. We used pseudotime inference to build macrophage trajectories and the corresponding model gene expression changes, and identified and characterized alveolar cells and immune subsets that may contribute to CALI pathophysiology based on gene expression profiles at single-cell resolution. Results The immune environment of cells, including dendritic cells and specific macrophage subclusters, exhibited increased function during the early stage of pulmonary tissue damage. Nine different subpopulations were identified that perform multiple functional roles, including immune responses, pulmonary tissue repair, cellular metabolic cycle, and cholesterol metabolism. Additionally, we found that individual macrophage subpopulations dominate the cell-cell communication landscape. Moreover, pseudo-time trajectory analysis suggested that proliferating macrophage clusters exerted multiple functional roles. Conclusion Our findings demonstrate that the bronchoalveolar immune microenvironment is a fundamental aspect of the immune response dynamics involved in the pathogenesis and recovery of CALI.
Collapse
Affiliation(s)
- Chao Cao
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Obulkasim Memet
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Fuli Liu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
| | - Hanbing Hu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lin Zhang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
| | - Heng Jin
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yiqun Cao
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Jian Zhou
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People’s Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Single-Cell RNA-Sequencing Reveals Epithelial Cell Signature of Multiple Subtypes in Chemically Induced Acute Lung Injury. Int J Mol Sci 2022; 24:ijms24010277. [PMID: 36613719 PMCID: PMC9820093 DOI: 10.3390/ijms24010277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Alveolar epithelial cells (AECs) play a role in chemically induced acute lung injury (CALI). However, the mechanisms that induce alveolar epithelial type 2 cells (AEC2s) to proliferate, exit the cell cycle, and transdifferentiate into alveolar epithelial type 1 cells (AEC1s) are unclear. Here, we investigated the epithelial cell types and states in a phosgene-induced CALI rat model. Single-cell RNA-sequencing of bronchoalveolar lavage fluid (BALF) samples from phosgene-induced CALI rat models (Gas) and normal controls (NC) was performed. From the NC and Gas BALF samples, 37,245 and 29,853 high-quality cells were extracted, respectively. All cell types and states were identified and divided into 23 clusters; three cell types were identified: macrophages, epithelial cells, and macrophage proliferating cells. From NC and Gas samples, 1315 and 1756 epithelial cells were extracted, respectively, and divided into 11 clusters. The number of AEC1s decreased considerably following phosgene inhalation. A unique SOX9-positive AEC2 cell type that expanded considerably in the CALI state was identified. This progenitor cell type may develop into alveolar cells, indicating its stem cell differentiation potential. We present a single-cell genome-scale transcription map that can help uncover disease-associated cytologic signatures for understanding biological changes and regeneration of lung tissues during CALI.
Collapse
|
8
|
Cao C, Zhang L, Shen J. Phosgene-Induced acute lung injury: Approaches for mechanism-based treatment strategies. Front Immunol 2022; 13:917395. [PMID: 35983054 PMCID: PMC9378823 DOI: 10.3389/fimmu.2022.917395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phosgene (COCl2) gas is a chemical intermediate of high-volume production with numerous industrial applications worldwide. Due to its high toxicity, accidental exposure to phosgene leads to various chemical injuries, primarily resulting in chemical-induced lung injury due to inhalation. Initially, the illness is mild and presents as coughing, chest tightness, and wheezing; however, within a few hours, symptoms progress to chronic respiratory depression, refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute to acute respiratory distress syndrome or even death in severe cases. Despite rapid advances in medicine, effective treatments for phosgene-inhaled poisoning are lacking. Elucidating the pathophysiology and pathogenesis of acute inhalation toxicity caused by phosgene is necessary for the development of appropriate therapeutics. In this review, we discuss extant literature on relevant mechanisms and therapeutic strategies to highlight novel ideas for the treatment of phosgene-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Zhang
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
10
|
Di Salvo E, Casciaro M, Gangemi S. IL-33 genetics and epigenetics in immune-related diseases. Clin Mol Allergy 2021; 19:18. [PMID: 34565403 PMCID: PMC8467020 DOI: 10.1186/s12948-021-00157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Interleukin-33 (IL-33) is a 30KDa protein, which belongs to the Interleukin-1 cytokine family. It is a crucial regulator of innate and adaptive immune responses. This interleukin is additionally involved in the inflammatory reaction versus helminthic infections. Interleukin 33 acts on group 2 innate lymphoid cells and mast cells macrophages, dendritic cells and CD4 + Th2 cells eliciting a type 2 immune response. Moreover, the cytokine can activate the ST2 of Tregs, demonstrating its ability to downregulate inflammation. IL-33 has also an intracellular function by regulating transcription. The active IL-33 doesn’t have a signal peptide, so it’s not released across a normal secretory pathway; the interleukin is released when the cells are damages and acts like an “alarmin”. Its influence on immune activation could be slightly adjusted via fine epigenetic interactions involving cascade pathways and immune genes. Due to the diverse data emerged from different experimental research, we decided span literature to clarify, as much as possible, how IL-33 is influenced by and influence gene expression. The authors reported how its balance is influenced, according to the tissue considered. Fundamental for immune-related diseases, IL-33 has a key role in controlling inflammation. The understanding of the cytokine switch will be fundamental in a near future in order to block or activate some immune pathways. In fact, we could control interleukins effects not only by monoclonal antibodies but also by using siRNA or miRNAs for silencing or expressing key genes.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Policlinico "G. Martino", University of Messina, Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Policlinico "G. Martino", University of Messina, Messina, Italy
| |
Collapse
|
11
|
Hui C, Liu X. Regulatory effect of NLRP3 on airway inflammatory response and pyroptosis in mice with asthma. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:959-964. [PMID: 34535213 DOI: 10.7499/j.issn.1008-8830.2106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the regulatory effect of the NOD-like receptor, pyrin domain-containing 3 (NLRP3) on airway inflammatory response and pyroptosis in mice with asthma. METHODS The NLRP3 wild-type (WT) C57BL/6J mice were divided into two groups: NLRP3-WT control and NLRP3-WT asthma. The mice with NLRP3 knockout (KO) were divided into two groups: NLRP3-KO control and NLRP3-KO asthma (n=10 each). A model of asthma was prepared by intraperitoneal injection of ovalbumin + aluminium hydroxide for sensitization and ovalbumin inhalation for challenge. Enhanced pause, an index for airway responsiveness, was measured for each group. Hematoxylin and eosin staining was used to observe the histomorphological changes of lungs and determine the inflammation score for each group. Bronchoalveolar lavage fluid was collected from each group to determine the numbers of neutrophils, eosinophils, and lymphocytes and measure the content of interleukin-1β (IL-1β) and interleukin-18 (IL-18). Western blot was used to measure the expression of NLRP3, cleaved caspase-1, and Gasdermin D-N in lung tissue of each group. RESULTS Compared with the NLRP3-WT control group, the NLRP3-WT asthma group showed morphological changes including airway smooth muscle thickening and inflammatory cell infiltration. Compared with the NLRP3-WT asthma group, the NLRP3-KO asthma group had significant improvements in the above morphological manifestations. Compared with the NLRP3-WT control group, the NLRP3-WT asthma group had significant increases in the enhanced pause, the inflammation score of lung tissue, the numbers of neutrophils, eosinophils and lymphocytes in bronchoalveolar lavage fluid, and the levels of IL-1β and IL-18 in bronchoalveolar lavage fluid (P<0.05). The expression of NLRP3, cleaved caspase-1, and Gasdermin D-N in lung tissue also significantly increased in the NLRP3-WT asthma group (P<0.05). The above indices in the NLRP3-KO asthma group were significantly lower than those in the NLRP3-WT asthma group (P<0.05). CONCLUSIONS The overexpression of NLRP3 is associated with the pathogenesis of asthma, which may be related to the molecular mechanisms of the activation of airway inflammatory response and pyroptosis. Citation.
Collapse
Affiliation(s)
- Chao Hui
- Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China (Liu X, 420901580@qq. com)
| | - Xin Liu
- Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China (Liu X, 420901580@qq. com)
| |
Collapse
|
12
|
Zou L, Yu Q, Zhang L, Yuan X, Fang F, Xu F. Identification of inflammation related lncRNAs and Gm33647 as a potential regulator in septic acute lung injury. Life Sci 2021; 282:119814. [PMID: 34298039 DOI: 10.1016/j.lfs.2021.119814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is commonly complicated by acute lung injury (ALI). We aimed to determine the long non-coding RNAs (lncRNAs) and mRNAs expression profiles. Septic acute lung injury mouse model was established by cecal ligation and puncture. LPS was applied to induce inflammation in mouse alveolar macrophages (MH-s). Besides, LPS/Nigericin sodium salt was used to activate inflammasome in MH-s. LncRNA and mRNA profiles were detected using an Agilent microarray and identified by qPCR. Bioinformatic analyses were employed to analyze the expression profiles and multiple biological functions. Inflammation-related mRNAs were selected according to KEGG pathways and GO terms including inflammation response, immune response and cytokine activity. A network of inflammation related mRNAs and co-expressed lncRNAs was conducted. Finally, Gm33647 was identified as potential regulator in septic acute lung injury. Gm33647 was knock-downed via siRNA to explore functions. The results showed 353 differentially expressed lncRNAs and 3116 differentially expressed mRNAs were identified. Co-expression networks of lncRNA-mRNA showed Gm33647 was a hub gene. Cis- and trans-regulation analyses revealed Gm41442, Gm38850 and Gm36841 could function as a network in septic ALI. LncRNA Gm33647 was reduced by LPS and increased by inflammasome activation in MH-s. Silencing Gm33647 up-regulated IL-6, IL10 and TNF-α in MH-s. When inflammasome was activated by LPS/Nigericin sodium salt, IL-1β, IL-18 and Caspase 1 were increased by silencing Gm33647 in MH-s. These results identified inflammation related lncRNAs and Gm33647 as potential regulators in septic ALI.
Collapse
Affiliation(s)
- Liying Zou
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qing Yu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Luyun Zhang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu Yuan
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fang Fang
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Feng Xu
- Department of Critical Care Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
13
|
Qu M, Zhang H, Chen Z, Sun X, Zhu S, Nan K, Chen W, Miao C. The Role of Ferroptosis in Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:651552. [PMID: 34026785 PMCID: PMC8137978 DOI: 10.3389/fmed.2021.651552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a newly discovered type of regulated cell death that is different from apoptosis, necrosis and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation, which induces cell death. Iron, lipid and amino acid metabolism is associated with ferroptosis. Ferroptosis is involved in the pathological development of various diseases, such as neurological diseases and cancer. Recent studies have shown that ferroptosis is also closely related to acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS), suggesting that it can be a novel therapeutic target. This article mainly introduces the metabolic mechanism related to ferroptosis and discusses its role in ALI/ARDS to provide new ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|