1
|
Xie H, Liang B, Zhao J, You C, Bai Q, Li R, Chen J, Zhou P, Dong L, Cheng R, Zhang J, Zhu Q. Target complement factor H / serum amyloid a signaling in trichloroethylene-induced immune kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118335. [PMID: 40373713 DOI: 10.1016/j.ecoenv.2025.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
The aberrant activation of the intracellular complement system is a significant characteristic of trichloroethylene (TCE) -induced immune kidney injury. However, the specific role of complement factor H (CFH) in this context remains unclear. This study investigates the involvement of CFH / serum amyloid A (SAA1) signaling in TCE-induced immune kidney injury by employing a combination of in vitro experiments and TCE-sensitized mouse model. Proteomic analyses results revealed that TCE-sensitized positive mice exhibited significantly increased expression of acute-phase reactive proteins, abnormal activation of the complement system. The treatment with TNFα and IFNγ-neutralizing antibodies reduced renal vascular endothelial cell injury and kidney damage in TCE-sensitized mice, and the combined treatment of recombinant TNFα and IFNγ reduced CFH intracellular expression but increased extracellular secretion in human renal glomerular endothelial cells (HRGECs). CFH in HRGECs notably protected endothelial barrier function when stimulated by TNFα and IFNγ. Moreover, CFH deficiency can lead to increased SAA1, which interacts with Toll-like receptor-2 (TLR2) to activate nuclear factor-kappaB (NF-κB). This study revealed that the combination of TNFα and IFNγ influences renal vascular endothelial barrier function by regulating the expression and secretion of local CFH. The downregulated intracellular CFH also associated with the inflammatory response in TCE-induced immune kidney injury by regulating the SAA1/TLR2 pathway.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bo Liang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jingyi Zhao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Chen You
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qirui Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rui Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Luolun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ruixuan Cheng
- Department of Dermatology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaxiang Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China; Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Lash LH. Trichloroethylene: An Update on an Environmental Contaminant with Multiple Health Effects. Annu Rev Pharmacol Toxicol 2025; 65:507-527. [PMID: 39094062 PMCID: PMC11893042 DOI: 10.1146/annurev-pharmtox-022724-120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The halogenated solvent trichloroethylene (TCE) has had many uses in medicine, construction, consumer products, and the military. Many of these uses have been discontinued or restricted due to its toxicity, which affects multiple target organs and includes both acute, high-dose toxicity and chronic, low-dose toxicity that also encompass several cancers. US and international agencies have conducted risk and hazard assessments for TCE, with comprehensive publications coming out in the last 10-15 years. Accordingly, the focus of this article is to review recently published data since that time (i.e., 2014) that clarify unsettled questions or provide additional insights into the metabolism and mechanisms of toxicity of TCE in several target organs. Besides metabolism, the review focuses on the kidneys, liver, immune system, nervous system, cardiovascular and pulmonary systems, the search for biomarkers, and recent analyses of human cancer risk and incidence from TCE exposure.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA;
| |
Collapse
|
3
|
Wang H, Wang F, Li Y, Zhou P, Cai S, Wu Q, Ding T, Wu C, Zhu Q. Exosomal miR-205-5p contributes to the immune liver injury induced by trichloroethylene: Pivotal role of RORα mediating M1 Kupffer cell polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117050. [PMID: 39278002 DOI: 10.1016/j.ecoenv.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Trichloroethylene (TCE) is a common environmental contaminant that can induce occupational dermatitis medicamentosa-like TCE (ODMLT), where the liver damage is the most common complication. The study aims to uncover the underlying mechanism of TCE-sensitization-induced liver damage by targeting specific exosomal microRNAs (miRNAs). Among the enriched serum exosomal miRNAs of ODMLT patients, miR-205-5p had a significant correlation coefficient with the liver function damage indicators. Moreover, retinoic acid receptor-related orphan receptor α (RORα) was identified as a direct target of miR-205-5p via specific binding. Further experiments showed that kupffer cells (KCs) underwent M1 phenotypic and functional changes in liver injury induced by TCE which were alleviated by reducing the expression of miR-205-5p. However, this alleviation was reversed by the RORα antagonist SR1001. In vitro experiments showed that miR-205-5p promoted M1 polarization of macrophages and enhanced the secretion of inflammatory factors by regulating RORα. An increase in RORα reversed the polarization direction of M1-type macrophages and reduced the secretion of proinflammatory factors. In addition, pretreatment of mice with SR1078, a specific RORα agonist, effectively blocked M1 polarization of KCs and reduced the severity of TCE-induced liver injury. Our study uncovers that miR-205-5p regulates KC M1 polarization by targeting RORα in immune liver injury induced by TCE sensitization, providing new insight into the molecular mechanisms and new therapeutic targets for ODMLT.
Collapse
Affiliation(s)
- Hui Wang
- Department of Prevention and Health Care, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Feng Wang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shuyang Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qifeng Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Tao Ding
- Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Changhao Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Qixing Zhu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.
| |
Collapse
|
4
|
Zhu L, Jia X, Xie H, Zhang J, Zhu Q. Trichloroethylene exposure, multi-organ injury, and potential mechanisms: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174029. [PMID: 38944297 DOI: 10.1016/j.scitotenv.2024.174029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Trichloroethylene (TCE) is a common environmental pollutant and industrial chemical that has been associated with adverse health effects, especially on organ systems. The purpose of this review is to summarize the current findings on organ system damage caused by TCE exposure and the underlying mechanisms involved. Numerous studies have shown that TCE exposure may cause damage to multiple organ systems, mainly the skin, liver, kidney, and circulatory system. The mechanisms leading to TCE-induced organ system damage are complex and diverse. TCE is metabolized in vivo to reactive intermediates, through which TCE can induce oxidative stress, interfere with cell signaling pathways, and promote inflammatory responses. In addition, studies have shown that TCE interferes with DNA repair mechanisms, leading to genotoxicity and potentially carcinogenic effects. This review highlights the importance of understanding the deleterious effects of TCE exposure on organ systems and provides insights into the underlying mechanisms involved. Further research is needed to elucidate the full range of organ system damage caused by TCE and to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Haibo Xie
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; The Center for Scientific Research, AnhuiMedical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| |
Collapse
|
5
|
Zhang X, Xie H, Liu Z, Zhang J, Deng L, Wu Q, Duan Y, Wang F, Wu C, Zhu Q. HMGB 1 acetylation mediates trichloroethylene-induced immune kidney injury by facilitating endothelial cell-podocyte communication. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115042. [PMID: 37216866 PMCID: PMC10250816 DOI: 10.1016/j.ecoenv.2023.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
More and more clinical evidence shows that occupational medicamentose-like dermatitis due to trichloroethylene (OMDT) patients often present immune kidney damage. However, the exact mechanisms of cell-to-cell transmission in TCE-induced immune kidney damage remain poorly understood. The present study aimed to explore the role of high mobility group box-1 (HMGB 1) in glomerular endothelial cell-podocyte transmission. 17 OMDT patients and 34 controls were enrolled in this study. We observed that OMDT patients had renal function injury, endothelial cell activation and podocyte injury, and these indicators were associated with serum HMGB 1. To gain mechanistic insight, a TCE-sensitized BALB/c mouse model was established under the interventions of sirtuin 1 (SIRT 1) activator SRT 1720 (0.1 ml, 5 mg/kg) and receptor for advanced glycation end products (RAGE) inhibitor FPS-ZM 1 (0.1 ml, 1.5 mg/kg). We identified HMGB 1 acetylation and its endothelial cytoplasmic translocation following TCE sensitization, but SRT 1720 abolished the process. RAGE was located on podocytes and co-precipitated with extracellular acetylated HMGB 1, promoting podocyte injury, while SRT 1720 and FPS-ZM 1 both alleviated podocyte injury. The results demonstrate that interventions to upstream and downstream pathways of HMGB 1 may weaken glomerular endothelial cell-podocyte transmission, thereby alleviating TCE-induced immune renal injury.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Haibo Xie
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Lihua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, China
| | - Qifeng Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Feng Wang
- Department of Dermatology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Qixing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Wang F, Dai Y, Huang M, Zhang C, Huang L, Wang H, Ye L, Wu Q, Zhang X, Zhu Q. Glomerular Damage in Trichloroethylene-Sensitized Mice: Targeting Cathepsin L-Induced Hyperactive mTOR Signaling. Front Pharmacol 2021; 12:639878. [PMID: 34393767 PMCID: PMC8358928 DOI: 10.3389/fphar.2021.639878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Trichloroethylene (TCE) is a serious health hazard for workers with daily exposure, causing occupational medicamentosa-like dermatitis due to TCE (OMDT) and glomerular damage. Recent studies suggest that mTORC1 signaling is activated in various glomerular disorders; however, the role of mTORC1 signaling in TCE-induced glomerular damage remains to be explored. In the present study, 6 OMDT patients were enrolled and a TCE-sensitized mouse model was established to investigate molecular mechanisms underlying the glomerular damage associated with OMDT. Glomerular damage was assessed by levels of urine nephrin, H&E staining, and renal function test. Ultrastructural change of podocyte was investigated by transmission electron microscopy. The podocyte-related molecules including nephrin, α-actinin-4, and integrin β1 were visualized by immunofluorescence. The activation of mTORC1 signaling was confirmed by Western blot. Glomerular apoptosis was examined by the TUNEL test and Western blotting. Expression and location of cathepsin L (CTSL) were assessed by RT-PCR and immunofluorescence. Our results showed that TCE sensitization caused damage to glomerular structural integrity and also increased the activation of mTORC1 signaling, which was accompanied by podocyte loss, hypertrophy, and glomerular apoptosis. Importantly, we also found that over-expressed CTSL was mainly located in podocyte and CTSL inhibition could partially block the activation of mTORC1 signaling. Thus, our findings suggested a novel mechanism whereby hyperactive mTOR signaling contributes to TCE sensitization–induced and immune-mediated glomerular damage via CTSL activation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuying Dai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Chenchen Zhang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hui Wang
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangping Ye
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qifeng Wu
- Poison Control Center, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xuejun Zhang
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|