1
|
Li W, Zhang Y, Zhao J, Yang T, Xie J. L-carnitine modified nanoparticles target the OCTN2 transporter to improve the oral absorption of jujuboside B. Eur J Pharm Biopharm 2024; 196:114185. [PMID: 38280469 DOI: 10.1016/j.ejpb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
As a bioactive saponin derived from the seeds of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow, jujuboside B (JuB) shows great potential in anti-anxiety, anti-depression and improving learning and memory function. However, its oral bioavailability is very poor. In this study, a novel drug-loading nanoparticles system was prepared with polyethylene glycol and polylactic-co-glycolic acid copolymer (PEG-PLGA), and further modified with L-carnitine (LC) to target intestinal organic cation/carnitine transporter 2 (OCTN2) to improve the oral absorption of JuB. Under the optimized preparation conditions, the particle sizes of obtained JuB-PEG-PLGA nanoparticles (B-NPs) and LC modified B-NPs (LC-B-NPs) were 110.67 ± 11.37 nm and 134.00 ± 2.00 nm with the entrapment efficiency (EE%) 73.46 ± 1.26 % and 76.01 ± 2.10 %, respectively. The pharmacokinetics in SD rats showed that B-NPs and LC-B-NPs increased the bioavailability of JuB to 134.33 % and 159.04 % respectively. In Caco-2 cell model, the prepared nanoparticles significantly increased cell uptake of JuB, which verified the pharmacokinetic results. The absorption of LC-B-NPs mainly depended on OCTN2 transporter, and Na+ played an important role. Caveolin and clathrin were involved in the endocytosis of the two nanoparticles. In conclusion, both B-NPs and LC-B-NPs can improve the oral absorption of JuB, and the modification of LC can effectively target the OCTN2 transporter.
Collapse
Affiliation(s)
- Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Jing Zhao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
2
|
Nagai H, Amanuma M, Mukozu T, Kobayashi K, Nagumo H, Mohri K, Watanabe G, Yoshimine N, Ogino Y, Daido Y, Matsukiyo Y, Matsui T, Wakui N, Momiyama K, Higai K, Matsuda T, Igarashi Y. Effects of Lenvatinib on Skeletal Muscle Volume and Cardiac Function in Patients with Hepatocellular Carcinoma. Oncology 2023; 101:634-644. [PMID: 37364546 DOI: 10.1159/000531562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Previously, we reported that the tyrosine kinase inhibitor (TKI) sorafenib decreases serum levels of carnitine and reduces skeletal muscle volume. Moreover, others reported that TKIs might lead to cardiomyopathy or heart failure. Therefore, this study aimed to evaluate the effects of lenvatinib (LEN) on skeletal muscle volume and cardiac function in patients with hepatocellular carcinoma (HCC). METHODS This retrospective study included 58 adult Japanese patients with chronic liver diseases and HCC treated with LEN. Blood samples were collected before and after 4 weeks of treatment, and serum carnitine fraction and myostatin levels were measured. Before and after 4-6 weeks of treatment, the skeletal muscle index (SMI) was evaluated from computed tomography images and cardiac function was assessed by ultrasound cardiography. RESULTS After treatment, SMI, serum levels of total carnitine, and global longitudinal strain were significantly lower, but serum levels of myostatin were significantly higher. Left ventricular ejection fraction showed no significant change. CONCLUSION In patients with HCC, LEN decreases serum levels of carnitine, skeletal muscle volume, and worsens cardiac function.
Collapse
Affiliation(s)
- Hidenari Nagai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Makoto Amanuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takanori Mukozu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kojiro Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hideki Nagumo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kunihide Mohri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Go Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Naoyuki Yoshimine
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yu Ogino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yasuko Daido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yasushi Matsukiyo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Teppei Matsui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Noritaka Wakui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koichi Momiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Takahisa Matsuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yoshinori Igarashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
3
|
Amiri R, Tabandeh MR, Hosseini SA. Novel Cardioprotective Effect of L-Carnitine on Obese Diabetic Mice: Regulation of Chemerin and CMKLRI Expression in Heart and Adipose Tissues. Arq Bras Cardiol 2021; 117:715-725. [PMID: 34709299 PMCID: PMC8528366 DOI: 10.36660/abc.20200044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Fundamentos A L-carnitina (LC) tem muitos efeitos benéficos em animais diabéticos e humanos, mas seu efeito regulatório sobre a quemerina como uma citocina inflamatória e seu receptor no estado diabético são desconhecidos. Objetivos O presente estudo teve como objetivo investigar o efeito regulatório da LC na expressão do receptor semelhante ao de quimiocina 1 e quemerina (CMKLRI) em tecidos adiposo e cardíaco de camundongos diabéticos. Métodos Sessenta camundongos NMARI foram divididos em quatro grupos, incluindo controle, diabético, diabético + suplementação com LC e controle + suplementação com LC. O diabetes foi induzido pela alimentação dos animais com dieta hipercalórica por 5 semanas e injeção de estreptozotocina. Os animais foram tratados com 300 mg/kg de LC por 28 dias. Nos dias 7, 14 e 28 após o tratamento, os níveis de mRNA e proteína da quemerina e CMKLRI nos tecidos cardíacos e adiposos de animais foram determinados utilizando análise por qPCR e ELISA. Os índices de resistência à insulina também foram medidos em todos os grupos experimentais. A diferença com p<0,05 foi considerada significativa. Resultados A expressão de quemerina e CMKLRI aumentou nos tecidos cardíaco e adiposo de camundongos diabéticos nos dias 14 e 28 após a indução do diabetes, concomitantemente com a incidência de resistência à insulina e níveis aumentados de quemerina circulante (p<0,05). O tratamento com LC causou uma diminuição significativa na expressão de ambos os genes nos tecidos estudados e redução dos sintomas de resistência à insulina e dos níveis séricos de quemerina (p<0,05). Conclusão Os resultados sugerem que o tratamento com LC pode diminuir a expressão de quemerina e CKLR1 em tecidos cardíacos e adiposos de animais experimentais obesos e diabéticos.
Collapse
Affiliation(s)
- Rezvan Amiri
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz - Irã
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz - Irã
| | - Seyed Ahmad Hosseini
- Department of Nutrition Science, Ahvaz Jundishapur University of Medical Sciences, Ahvaz - Irã
| |
Collapse
|
4
|
Abstract
Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell-derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.
Collapse
|
5
|
Li H, Yuan H, Middleton A, Li J, Nicol B, Carmichael P, Guo J, Peng S, Zhang Q. Next generation risk assessment (NGRA): Bridging in vitro points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling - A case study of doxorubicin with dose metrics considerations. Toxicol In Vitro 2021; 74:105171. [PMID: 33848589 DOI: 10.1016/j.tiv.2021.105171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Using the chemical doxorubicin (DOX), the objective of the present study was to evaluate the impact of dose metrics selection in the new approach method of integrating physiologically-based kinetic (PBK) modelling and relevant human cell-based assays to inform a priori the point of departure for human health risk. We reviewed the literature on the clinical consequences of DOX treatment to identify dosing scenarios with no or mild cardiotoxicity observed. Key concentrations of DOX that induced cardiomyocyte toxicity in vitro were derived from studies of our own and others. A human population-based PBK model of DOX was developed and verified against pharmacokinetic data. The model was then used to predict plasma and extracellular and intracellular heart concentrations of DOX under selected clinical settings and compared with in vitro outcomes, based on several dose metrics: Cmax (maximum concentration) or AUC (area under concentration-time curve) in free or total form of DOX. We found when using in vitro assays to predict cardiotoxicity for DOX, AUC is a better indicator. Our study illustrates that when appropriate dose metrics are used, it is possible to combine PBK modelling with in vitro-derived toxicity information to define margins of safety and predict low-risk human exposure levels.
Collapse
Affiliation(s)
- Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Haitao Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Alistair Middleton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Anderson JT, Huang KM, Lustberg MB, Sparreboom A, Hu S. Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions. Rev Physiol Biochem Pharmacol 2020; 183:177-215. [PMID: 32761456 DOI: 10.1007/112_2020_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
Collapse
Affiliation(s)
- Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
8
|
Hancox JC, Whittaker DG, Zhang H, Stuart AG. Learning from studying very rare cardiac conditions: the example of short QT syndrome. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-019-0024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Kou L, Sun R, Ganapathy V, Yao Q, Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 2018; 22:715-726. [PMID: 30016594 DOI: 10.1080/14728222.2018.1502273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Transporters in the plasma membrane have been exploited successfully for the delivery of drugs in the form of prodrugs and nanoparticles. Organic cation/carnitine transporter 2 (OCTN2, SLC22A5) has emerged as a viable target for drug delivery. OCTN2 is a Na+-dependent high-affinity transporter for L-carnitine and a Na+-independent transporter for organic cations. OCTN2 is expressed in the blood-brain barrier, heart, liver, kidney, intestinal tract and placenta and plays an essential role in L-carnitine homeostasis in the body. Areas covered: In recent years, several studies have been reported in the literature describing the utility of OCTN2 to enhance the delivery of drugs, prodrugs and nanoparticles. Here we summarize the salient features of OCTN2 in terms of its role in the cellular uptake of its physiological substrate L-carnitine in physiological and pathological context; the structural requirements for recognition and the recent advances in OCTN2-targeted drug delivery systems, including prodrugs and nanoparticles, are discussed. Expert opinion: This transporter has great potential to be utilized as a target for drug delivery to improve oral absorption of drugs in the intestinal tract. It also has potential to facilitate the transfer of drugs across the biological barriers such as the blood-brain barrier, blood-retinal barrier, and maternal-fetal barrier.
Collapse
Affiliation(s)
- Longfa Kou
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Rui Sun
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Vadivel Ganapathy
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Cell Biology and Biochemistry , School of Medicine, Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Qing Yao
- c School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Ruijie Chen
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
10
|
Huang KM, Hu S, Sparreboom A. Drug transporters and anthracycline-induced cardiotoxicity. Pharmacogenomics 2018; 19:883-888. [DOI: 10.2217/pgs-2018-0056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The solute carrier superfamily comprises of uptake transporters that can contribute to the absorption and elimination of a broad array of clinically important drugs. Recent studies have suggested that the tissue-specific expression of these transporters may have important consequences for an individual's susceptibility to drug-induced organ damage or to drug–drug interactions. Polymorphic variants have been identified in genes encoded by this family, and some of these have been associated with functional changes in transport function and response to anthracycline-induced toxicity and efficacy. Here, we review recent advances in the role solute carrier transporters play in anthracycline-induced cardiotoxicity, highlight potential implications of genetic variants that may contribute to drug response and discuss novel technologies to study mechanisms of anthracycline transport.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Takeuchi R, Shinozaki K, Nakanishi T, Tamai I. Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart. Drug Metab Dispos 2016; 44:68-74. [PMID: 26467765 DOI: 10.1124/dmd.115.066654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/08/2015] [Indexed: 02/13/2025] Open
Abstract
Clinical reports indicate that cardiotoxicity due to donepezil can occur after coadministration with cilostazol. We speculated that the concentration of donepezil in heart tissue might be increased as a result of interaction with cilostazol at efflux transporters such as P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), which are expressed in many tissues including the heart, and our study tested this hypothesis. First, donepezil was confirmed to be a substrate of both BCRP and P-glycoprotein in transporter-transfected cells in vitro. Cilostazol inhibited BCRP and P-glycoprotein with half-inhibitory concentrations of 130 nM and 12.7 μM, respectively. Considering the clinically achievable unbound plasma concentration of cilostazol (about 200 nM), it is plausible that BCRP-mediated transport of donepezil would be affected by cilostazol in vivo. Indeed, in an in vivo rat study, we found that coadministration of cilostazol significantly increased the concentrations of donepezil in the heart and brain, where BCRP functions as a part of the blood-tissue barrier, whereas the plasma concentration of donepezil was unaffected. In addition, in vitro accumulation of donepezil in heart tissue slices of rats was significantly increased in the presence of cilostazol. These results indicate that donepezil-cilostazol interaction at BCRP may be clinically relevant in heart and brain tissues. In other words, the tissue distribution of drugs can be influenced by drug-drug interaction (DDI) at efflux transporters in certain tissues (local DDI) without any apparent change in plasma concentration (systemic DDI).
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Acridines/pharmacology
- Administration, Intravenous
- Administration, Oral
- Animals
- Biological Transport
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Cardiotoxicity
- Cholinesterase Inhibitors/administration & dosage
- Cholinesterase Inhibitors/chemistry
- Cholinesterase Inhibitors/pharmacokinetics
- Cholinesterase Inhibitors/toxicity
- Cilostazol
- Dogs
- Donepezil
- Drug Interactions
- Female
- In Vitro Techniques
- Indans/administration & dosage
- Indans/blood
- Indans/pharmacokinetics
- Indans/toxicity
- Madin Darby Canine Kidney Cells
- Male
- Models, Biological
- Myocardium/metabolism
- Piperidines/administration & dosage
- Piperidines/blood
- Piperidines/pharmacokinetics
- Piperidines/toxicity
- Rats, Wistar
- Tetrahydroisoquinolines/pharmacology
- Tetrazoles/pharmacology
- Tetrazoles/toxicity
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Ryota Takeuchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Kohki Shinozaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa (R.T., T.N., I.T.) and Hikuma Pharmacy, Hamamatsu (K.S.), Japan
| |
Collapse
|
12
|
Salsoso R, Guzmán-Gutiérrez E, Arroyo P, Salomón C, Zambrano S, Ruiz-Armenta MV, Blanca AJ, Pardo F, Leiva A, Mate A, Sobrevia L, Vázquez CM. Reduced L-carnitine transport in aortic endothelial cells from spontaneously hypertensive rats. PLoS One 2014; 9:e90339. [PMID: 24587332 PMCID: PMC3938671 DOI: 10.1371/journal.pone.0090339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/30/2014] [Indexed: 12/28/2022] Open
Abstract
Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5–8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na+-dependent (Na+dep) compared with Na+-independent (Na+indep) transport components. Saturable L-carnitine transport kinetics show maximal velocity (Vmax), without changes in apparent Km for Na+indep transport in SHR compared with WKY rats. Total and Na+dep component of transport were increased, but Na+indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced L-carnitine transport (likely via Na+-dependent Octn2) could limit this compound's potential beneficial effects in RAECs from SHR.
Collapse
Affiliation(s)
- Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Guzmán-Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Arroyo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Salomón
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sonia Zambrano
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | | | - Antonio Jesús Blanca
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso Mate
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
- * E-mail: (CMV); (LS)
| | - Carmen María Vázquez
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Sevilla, Spain
- * E-mail: (CMV); (LS)
| |
Collapse
|
13
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
14
|
Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, Kusuhara H, Sugiyama Y, Sai Y, Miyamoto KI, Tsuji A, Kato Y. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci 2013; 102:3407-17. [PMID: 23666872 DOI: 10.1002/jps.23595] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/11/2022]
Abstract
Metformin is a widely used oral anti-diabetic, but the molecular mechanism(s) of its gastrointestinal membrane permeation remains unclear. Here, we examined the role of carnitine/organic cation transporter OCTN1/SLC22A4, which is localized on apical membranes of small intestine in mice and humans, in metformin absorption. The maximum plasma concentration (Cmax ) after oral administration of metformin (50 mg/kg) in octn1 gene knockout mice (octn1 (-/-) ) was higher than that in wild-type mice, with only a minimal difference in terminal half-life, but Cmax in octn1(-/-) mice given a higher dose (175 mg/kg) was lower than that in wild-type mice. Systemic elimination of metformin after intravenous administration was similar in the two strains, suggesting the possible involvement of OCTN1 in the gastrointestinal absorption. OCTN1-mediated uptake of metformin was observed in human embryonic kidney 293 cells transfected with mouse OCTN1 gene, but much lower than the uptake of the typical substrate [(3) H]ergothioneine (ERGO). In particular, the distribution volume for OCTN1-mediated uptake increased markedly and then tended to decrease as the metformin concentration was increased. Efflux of metformin preloaded in intestinal epithelial cell line Caco-2 was inhibited by ERGO. Overall, the present findings suggest that OCTN1 transports metformin and may be involved in its oral absorption in small intestine.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Furuichi Y, Sugiura T, Kato Y, Takakura H, Hanai Y, Hashimoto T, Masuda K. Muscle contraction increases carnitine uptake via translocation of OCTN2. Biochem Biophys Res Commun 2012; 418:774-9. [DOI: 10.1016/j.bbrc.2012.01.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
|
16
|
Li Q, Peng X, Yang H, Wang H, Shu Y. Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol Pharm 2011; 8:2476-83. [PMID: 21991918 PMCID: PMC3230245 DOI: 10.1021/mp200395f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates cellular transport of a variety of structurally diverse compounds. Paraquat (PQ), which has been characterized in vitro as a MATE1 substrate, is a widely used herbicide and can cause severe toxicity to humans after exposure. However, the contribution of MATE1 to PQ disposition in vivo has not been determined. In the present study, we generated Mate1-deficient (Mate1–/–) mice and performed toxicokinetic analyses of PQ in Mate1–/– and wild-type (Mate1+/+) mice. After a single intravenous administration of PQ (50 mg/kg), Mate1–/– mice exhibited significantly higher plasma PQ concentrations than Mate1+/+ mice. The renal PQ concentration was markedly increased in Mate1–/– mice compared with Mate1+/+ mice. The subsequent nephrotoxicity of PQ were examined in these mice. Three days after intraperitoneal administration of PQ (20 mg/kg), the transcript levels of N-acetyl-β-d-glucosaminidase (Lcn2) and kidney injury molecule-1 (Kim-1) in the kidney were remarkably enhanced in the Mate1–/– mice. This was accompanied by apparent difference in renal histology between Mate1–/– and Mate1+/+ mice. In conclusion, we demonstrated that Mate1 is responsible for renal elimination of PQ in vivo and the deficiency of Mate1 function confers deteriorated kidney injury caused by PQ in mice.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland, United States
| | | | | | | | | |
Collapse
|
17
|
Grube M, Ameling S, Noutsias M, Köck K, Triebel I, Bonitz K, Meissner K, Jedlitschky G, Herda LR, Reinthaler M, Rohde M, Hoffmann W, Kühl U, Schultheiss HP, Völker U, Felix SB, Klingel K, Kandolf R, Kroemer HK. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2547-59. [PMID: 21641380 DOI: 10.1016/j.ajpath.2011.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 01/11/2023]
Abstract
Organic cation transporters (OCT1-3 and OCTN1/2) facilitate cardiac uptake of endogenous compounds and numerous drugs. Genetic variants of OCTN2, for example, reduce uptake of carnitine, leading to heart failure. Whether expression and function of OCTs and OCTNs are altered by disease has not been explored in detail. We therefore studied cardiac expression, heart failure-dependent regulation, and affinity to cardiovascular drugs of these transporters. Cardiac transporter mRNA levels were OCTN2>OCT3>OCTN1>OCT1 (OCT2 was not detected). Proteins were localized in vascular structures (OCT3/OCTN2/OCTN1) and cardiomyocytes (OCT1/OCTN1). Functional studies revealed a specific drug-interaction profile with pronounced inhibition of OCT1 function, for example, carvedilol [half maximal inhibitory concentration (IC₅₀), 1.4 μmol/L], diltiazem (IC₅₀, 1.7 μmol/L), or propafenone (IC₅₀, 1.0 μmol/L). With use of the cardiomyopathy model of coxsackievirus-infected mice, Octn2mRNA expression was significantly reduced (56% of controls, 8 days after infection). Accordingly, in endomyocardial biopsy specimens OCTN2 expression was significantly reduced in patients with dilated cardiomyopathy, whereas the expression of OCT1-3 and OCTN1 was not affected. For OCTN2 we observed a significant correlation between expression and left ventricular ejection fraction (r = 0.53, P < 0.0001) and the presence of cardiac CD3⁺ T cells (r = -0.45, P < 0.05), respectively. OCT1, OCT3, OCTN1, and OCTN2 are expressed in the human heart and interact with cardiovascular drugs. OCTN2 expression is selectively reduced in dilated cardiomyopathy patients and predicts the impairment of cardiac function.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Diao L, Polli JE. Synthesis and in vitro characterization of drug conjugates of l-carnitine as potential prodrugs that target human Octn2. J Pharm Sci 2011; 100:3802-16. [DOI: 10.1002/jps.22557] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/21/2011] [Accepted: 03/02/2011] [Indexed: 01/11/2023]
|
19
|
Weiss M. Functional characterization of drug uptake and metabolism in the heart. Expert Opin Drug Metab Toxicol 2011; 7:1295-306. [DOI: 10.1517/17425255.2011.614233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Rossato LG, Costa VM, de Pinho PG, Carvalho F, de Lourdes Bastos M, Remião F. Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Arch Toxicol 2011; 85:929-939. [PMID: 21140131 DOI: 10.1007/s00204-010-0630-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/18/2010] [Indexed: 01/11/2023]
Abstract
Synephrine is a natural compound, frequently added to ephedra-free dietary supplements for weight-loss, due to its effects as a nonspecific adrenergic agonist. Though only p-synephrine has been documented in plants, the presence of m-synephrine has also been reported in weight-loss products. The use of synephrine in dietary supplements was accompanied by reports of adverse effects, especially at the cardiovascular level. It is well known that the imbalance in cardiac glutathione levels can increase the risk of cardiomyopathy. The present work aimed to study the role of organic cation-mediated transport of m- and p-synephrine and the possibility that p- and m-synephrine induce intracellular changes in glutathione levels in calcium-tolerant freshly isolated cardiomyocytes from adult rat. After a 3 h incubation with 1 mM p- or m-synephrine, the intracellular content of synephrine was measured by gas chromatography/ion trap-mass spectrometry (GC/IT-MS); cell viability and intracellular glutathione levels were also determined. To evaluate the potential protective effects of antioxidants against the adverse effects elicited by m-synephrine, cells were pre-incubated for 30 min with Tiron (100 μM) or N-acetyl-cysteine (NAC) (1 mM). To assess the influence of α(1)-adrenoceptors activation in glutathione depletion, a study with prazosin (100 nM) was also performed. The results obtained provide evidence that organic cation transporters OCT3 and OCT1 play a major role in m- and p-synephrine-mediated transport into the cardiomyocytes. The importance of these transporters seems similar for both isomers, although p-synephrine enters more into the cardiomyocytes. Furthermore, only m-synephrine induced intracellular total glutathione (GSHt) and reduced glutathione (GSH) depletion. NAC and Tiron were able to counteract the m-synephrine-induced GSH and GSHt decrease. On the other hand, the incubation with prazosin was not able to change m-synephrine-induced glutathione depletion showing that this effect is independent of α(1)-adrenoceptor stimulation. In conclusion, both positional isomers require OCT3 and OCT1-mediated transport to enter into the cardiomyocytes; however, the hydroxyl group in the p-position favours the OCT-mediated transport into cardiomyocytes. Furthermore, the structural isomerization of synephrine influences its toxicological profile since only m-synephrine caused GSH depletion.
Collapse
Affiliation(s)
- Luciana Grazziotin Rossato
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
21
|
Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol 2011; 79:795-805. [PMID: 21325265 PMCID: PMC3082935 DOI: 10.1124/mol.110.070607] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/11/2011] [Indexed: 01/12/2023] Open
Abstract
Recent data from knockouts, human disease, and transport studies suggest that solute carrier (SLC) and ATP binding cassette (ABC) multispecific "drug" transporters maintain effective organ and body fluid concentrations of key nutrients, signaling molecules, and antioxidants. These processes involve transcellular movement of solutes across epithelial barriers and fluid compartments (e.g., blood, cerebrospinal fluid, urine, bile) via "matching" or homologous sets of SLC (e.g., SLC21, SLC22, SLC47) and ABC transporters. As described in the "Remote Sensing and Signaling Hypothesis" (Biochem Biophys Res Commun 323:429-436, 2004; Biochem Biophys Res Commun 351:872-876, 2006; J Biol Chem 282:23841-23853, 2007; Nat Clin Pract Nephrol 3:443-448, 2007; Mol Pharmacol 76:481-490, 2009), highly regulated transporter networks with overlapping substrate preferences are involved in sensing and signaling to maintain homeostasis in response to environmental changes (e.g., substrate imbalance and injury). They function in parallel with (and interact with) the endocrine and autonomic systems. Uric acid (urate), carnitine, prostaglandins, conjugated sex steroids, cGMP, odorants, and enterobiome metabolites are discussed here as examples. Xenobiotics hitchhike on endogenous carrier systems, sometimes leading to toxicity and side effects. By regulation of the expression and/or function of various remote organ multispecific transporters after injury, the overall transport capacity of the remote organ to handle endogenous toxins, metabolites, and signaling molecules may change, aiding in recovery. Moreover, these transporters may play a role in communication between organisms. The specific cellular components involved in sensing and altering transporter abundance or functionality depend upon the metabolite in question and probably involve different types of sensors as well as epigenetic regulation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
22
|
Yang T, McBride BF, Leake BF, Kim RB, Roden DM. Modulation of drug block of the cardiac potassium channel KCNA5 by the drug transporters OCTN1 and MDR1. Br J Pharmacol 2010; 161:1023-33. [PMID: 20977453 DOI: 10.1111/j.1476-5381.2010.00932.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE A common site for drug binding on voltage-gated ion channels is at the interior face of the channel pore. In this study, we tested the hypothesis that the extent of drug block of the human cardiac KCNA5 (K(v) 1.5) channel underlying the atrial-specific, ultra-rapidly activating, delayed K(+) current (I(Kur) ) is modulated by the drug uptake and efflux transporters encoded by organic cation transporter 1 (OCTN1) and multiple drug-resistant gene 1 (MDR1) and expressed in human heart. EXPERIMENTAL APPROACH Drug block of KCNA5 was assessed in Chinese hamster ovary cells transiently transfected with KCNA5 alone or in combination with the OCTN1 or MDR1 transporter construct, as well as in an MDR1 stably expressed cell line. KEY RESULTS Co-expression of OCTN1 significantly facilitated block by quinidine (10 µM), verapamil (20 µM), propafenone (5 µM) and clofilium (30 µM). Further evidence of drug transport modulating drug block was the finding that with OCTN1, block developed faster and only partially washed-out, and that block potentiation was prevented by cimetidine, an inhibitor of OCTN1. MDR1 expression attenuated KCNA5 block by erythromycin (an MDR1 substrate). Block was restored by reversin-205 (10 µM, an MDR1 inhibitor). MDR1 did not affect KCNA5 inhibition by KN-93 (1 µM), a blocker acting on the outer mouth of the channel pore. CONCLUSIONS AND IMPLICATIONS The extent of drug block of KCNA5 can be modulated by drug uptake and efflux transporters. These data provide further support for the idea that modifying intracellular drug concentrations could modulate the effects of blocking ion channels in patients.
Collapse
Affiliation(s)
- Tao Yang
- Oates Institute for Experimental Therapeutics, Departments of Pharmacology and Medicine, University Medical Center, Vanderbilt University School of Medicine, 2215-B Garland Avenue, Nashville, TN 37232-0575, USA.
| | | | | | | | | |
Collapse
|
23
|
Furuichi Y, Sugiura T, Kato Y, Shimada Y, Masuda K. OCTN2 is associated with carnitine transport capacity of rat skeletal muscles. Acta Physiol (Oxf) 2010; 200:57-64. [PMID: 20219053 DOI: 10.1111/j.1748-1716.2010.02101.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Carnitine plays an essential role in fat oxidation in skeletal muscles; therefore carnitine influx could be crucial for muscle metabolism. OCTN2, a sodium-dependent solute carrier, is assumed to transport carnitine into various organs. However, OCTN2 protein expression and the functional importance of carnitine transport for muscle metabolism have not been studied. We tested the hypothesis that OCTN2 is expressed at higher levels in oxidative muscles than in other muscles, and that the carnitine uptake capacity of skeletal muscles depends on the amount of OCTN2. METHODS Rat hindlimb muscles (soleus, plantaris, and the surface and deep portions of gastrocnemius) were used for Western blotting to detect OCTN2. Tissue carnitine uptake was examined by an integration plot analysis using l-[(3)H]carnitine as a tracer. Tissue carnitine content was determined by enzymatic cycling methods. The percentage of type I fibres was determined by histochemical analysis. RESULTS OCTN2 was detected in all skeletal muscles although the amount was lower than that in the kidney. OCTN2 expression was significantly higher in soleus than in the other skeletal muscles. The amount of OCTN2 was positively correlated with the percentage of type I fibres in hindlimb muscles. The integration plot analysis revealed a positive correlation between the uptake clearance of l-[(3)H]carnitine and the amount of OCTN2 in skeletal muscles. However, the carnitine content in soleus was lower than that in other skeletal muscles. CONCLUSION OCTN2 is functionally expressed in skeletal muscles and is involved in the import of carnitine for fatty acid oxidation, especially in highly oxidative muscles.
Collapse
Affiliation(s)
- Y Furuichi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa-city, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 580] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
25
|
Kato S, Kato Y, Nakamura T, Sugiura T, Kubo Y, Deguchi Y, Tsuji A. Genetic deficiency of carnitine/organic cation transporter 2 (slc22a5) is associated with altered tissue distribution of its substrate pyrilamine in mice. Biopharm Drug Dispos 2010; 30:495-507. [PMID: 19821448 DOI: 10.1002/bdd.681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carnitine/organic cation transporter 2 (OCTN2) recognizes various cationic compounds as substrates in vitro, but information on its pharmacokinetic role in vivo is quite limited. This paper demonstrates altered tissue distribution of the OCTN2 substrate pyrilamine in juvenile visceral steatosis (jvs) mice, which have a hereditary defect of the octn2 gene. At 30 min after intravenous injection of pyrilamine, the tissue-to-plasma concentration ratio (K(p)) in the heart and pancreas was higher, whereas the K(p) in kidney and testis was lower in jvs mice compared with wild-type mice. Pyrilamine transport studies in isolated heart slices confirmed higher accumulation, together with lower efflux, of pyrilamine in the heart of jvs mice. The higher accumulation in heart slices of jvs mice was abolished by lowering the temperature, by increasing the substrate concentration, and in the presence of other H(1) antagonists or another OCTN2 substrate, carnitine, suggesting that OCTN2 extrudes pyrilamine from heart tissue. On the other hand, the lower distribution to the kidney of jvs mice was probably due to down-regulation of a basolateral transporter coupled with OCTN2, because, in jvs mice, (i) the K(p) of pyrilamine in kidney assessed immediately after intravenous injection (approximately 1 min) was also lower, (ii) the urinary excretion of pyrilamine was lower, and (iii) the uptake of pyrilamine in kidney slices was lower. The renal uptake of pyrilamine was saturable (K(m) approximately 236 microM) and was strongly inhibited by cyproheptadine, astemizole, ebastine and terfenadine. The present study thus indicates that genetic deficiency of octn2 alters pyrilamine disposition tissue-dependently.
Collapse
Affiliation(s)
- Sayaka Kato
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kano T, Kato Y, Ito K, Ogihara T, Kubo Y, Tsuji A. Carnitine/organic cation transporter OCTN2 (Slc22a5) is responsible for renal secretion of cephaloridine in mice. Drug Metab Dispos 2009; 37:1009-16. [PMID: 19220985 DOI: 10.1124/dmd.108.025015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnitine/organic cation transporter (OCTN) 2 (SLC22A5) plays a pivotal role in renal tubular reabsorption of carnitine, a vitamin-like compound, on apical membranes of proximal tubules, but its role in relation to therapeutic drugs remains to be clarified. The purpose of the present study was to elucidate the involvement of OCTN2 in renal disposition of a beta-lactam antibiotic, cephaloridine (CER), based on experiments with juvenile visceral steatosis (jvs) mice, which have a functional deficiency of the octn2 gene. Renal clearance of CER during constant intravenous infusion in wild-type mice was much higher than could be accounted for by glomerular filtration, but was decreased by increasing the infusion rate with minimal change in kidney-to-plasma concentration ratio, suggesting the existence of saturable transport mechanism(s) across the apical membranes. The plasma concentration profile and kidney-to-plasma concentration ratio after intravenous injection in jvs mice were higher than those in wild-type mice, whereas renal clearance in jvs mice was much lower than that in wild-type mice and could be accounted for by glomerular filtration. Uptake of CER by mouse OCTN2 was shown in Xenopus laevis oocytes expressing mouse OCTN2. The CER transport by OCTN2 exhibited saturation with K(m) of approximately 3 mM, which is similar to the renal CER concentration exhibiting saturation in renal clearance in vivo. The OCTN2-mediated CER transport was inhibited by carnitine and independent of Na(+) replacement in the medium. These results show OCTN2 on apical membranes of proximal tubules plays a major role in renal secretion of CER in mice.
Collapse
Affiliation(s)
- Takashi Kano
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M, Stryke D, Johns SJ, Ferrin TE, Kwok PY, Giacomini KM. Functional genetic variation in the basal promoter of the organic cation/carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). J Pharmacol Exp Ther 2009; 329:262-71. [PMID: 19141711 PMCID: PMC2670604 DOI: 10.1124/jpet.108.146449] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/12/2009] [Indexed: 01/18/2023] Open
Abstract
The organic cation/ergothioneine transporter OCTN1 (SLC22A4) and the high-affinity carnitine transporter OCTN2 (SLC22A5), play an important role in the disposition of xenobiotics and endogenous compounds. Here, we analyzed the sequence of the proximal promoter regions of OCTN1 and OCTN2 in four ethnic groups and determined the effects of the identified genetic variants on transcriptional activities and mRNA expression. Six variants were found in the proximal promoter of OCTN1, one of which showed high allele frequency ranging from 13 to 34% in samples from individuals with ancestries in Africa, Europe, China, and Mexico. OCTN1 haplotypes had similar activities as the reference in luciferase reporter assays. For OCTN2, three of the seven variants identified in the proximal promoter showed allele frequencies greater than 29.5% in all populations, with the exception of -207C>G (rs2631367) that was monomorphic in Asian Americans. OCTN2 haplotypes containing -207G, present in all populations, were associated with a gain of function in luciferase reporter assays. Consistent with reporter assays, OCTN2 mRNA expression levels in lymphoblastoid cell lines (LCLs) from gene expression analysis were greater in samples carrying a marker for -207G. This SNP seems to contribute to racial differences in OCTN2 mRNA expression levels in LCLs. Our study with healthy subjects (n = 16) homozygous for either -207C or -207G, showed no appreciable effect of this SNP on carnitine disposition. However, there were significant effects of gender on carnitine plasma levels (p < 0.01). Further in vivo studies of OCTN2 promoter variants on carnitine disposition and variation in drug response are warranted.
Collapse
Affiliation(s)
- Harunobu Tahara
- Department of Biopharmaceutical Sciences, University of California, San Francisco, San Francisco, CA 94158-2911, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|