1
|
Guo M, Li M, Chen L, Wang H, Wang J, Niu P, Ma J. Glutaminase 1 isoform up-regulation associated with lipid metabolism disorder induced by methyl tertiary-butyl ether in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114763. [PMID: 37032576 DOI: 10.1016/j.ecoenv.2023.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Methyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.
Collapse
Affiliation(s)
- Mingxiao Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mengdi Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hanyun Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiajia Wang
- Department of nutrition and food safety, Fengtai Center for Disease Control and Prevention, Beijing 100071
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Zhu J, Li J, Du L. Exploring the formation potential and optical properties of secondary organic aerosol from the photooxidation of selected short aliphatic ethers. J Environ Sci (China) 2020; 95:82-90. [PMID: 32653196 DOI: 10.1016/j.jes.2020.03.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Secondary organic aerosol (SOA) formation potential for six kinds of short aliphatic ethers has been studied. The size distribution, mass concentration, and yield of SOA formed by ethers photooxidation were determined under different conditions. The results showed that all six ethers can generate SOA via reaction with OH radicals even under no seed and NOx-free condition. The mass concentration for six seedless experiments was less than 10 µg/m3 and the SOA yields were all below 1%. The strong increase in the SOA formation was observed when the system contained ammonium sulfate seed particles, while SOA yield decreased under the high-NOx condition. SOA composition was analyzed using offline methods. Infrared spectra indicated that there are complex components in the particle-phase including carbonyls acid and aldehydes species. Moreover, the aqueous filter extracts were analyzed using ultraviolet-visible spectrometer and fluorescence spectrophotometer. For the fresh methyl n-butyl ether SOA, the largest absorption peak occurs at 280 nm and there exists slightly absorption in the 300-400 nm. Excitation-emission matrices display the distinct peak at excitation/emission = 470 nm/480 nm according to the fluorescence spectrum. These findings are important considerations of formation for ether SOA that can eventually be included in atmospheric models.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Tang Y, Ren Q, Wen Q, Yu C, Xie X, Hu Q, Du Y. Effect of methyl tert-butyl ether on adipogenesis and glucose metabolism in vitro and in vivo. J Environ Sci (China) 2019; 85:208-219. [PMID: 31471028 DOI: 10.1016/j.jes.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Methyl tert-butyl ether (MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57BL/6J mice model. We found that exposure to MTBE at the environmental relevant concentration (100 μmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte. The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue (vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 μg/(kg·day) disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: ..
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Balducci C, Perilli M, Romagnoli P, Cecinato A. New developments on emerging organic pollutants in the atmosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1875-1884. [PMID: 22767285 DOI: 10.1007/s11356-012-0815-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/08/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The continuous progress in analytical techniques has improved the capability of detecting chemicals and recognizing new substances and extended the list of detectable contaminants widespread in all environmental compartments by human activities. Most concern is focused on water contamination by emerging compounds. By contrast, scarce attention is paid to the atmospheric sector, which in most cases represents the pathway of diffusion at local or global scale. Information concerning a list of organic pollutants is provided in this paper. METHODS The volatile methyl tert-butyl ether and siloxanes are taken as examples of information insufficient with regard to the potential risk induced by diffusion in the atmosphere. Illicit drugs, whose presence in the air was ascertained although by far unexpected, are considered to stress the needs of investigating not solely the environmental compartments where toxic substances are suspected to display their major influence. Finally, the identification of two recognized emerging contaminants, i.e., tris(2-chloroisopropyl) phosphate and N,N-diethyl-m-toluamide, in aerosols originally run to characterize other target compounds is presented with the purpose of underlining the wide diffusion of the organic emerging contaminants in the environment.
Collapse
Affiliation(s)
- Catia Balducci
- Institute of Atmospheric Pollution Research-National Research Council of Italy (CNR-IIA), Via Salaria km 29.3, 00015 Monterotondo Stazione, RM, Italy.
| | | | | | | |
Collapse
|
5
|
Goldstein AH, Millet DB, McKay M, Jaeglé L, Horowitz L, Cooper O, Hudman R, Jacob DJ, Oltmans S, Clarke A. Impact of Asian emissions on observations at Trinidad Head, California, during ITCT 2K2. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004406] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Allen H. Goldstein
- Department of Environmental Science, Policy, and Management; University of California; Berkeley California USA
| | - Dylan B. Millet
- Department of Environmental Science, Policy, and Management; University of California; Berkeley California USA
| | - Megan McKay
- Department of Environmental Science, Policy, and Management; University of California; Berkeley California USA
| | - Lyatt Jaeglé
- Department of Atmospheric Science; University of Washington; Seattle Washington USA
| | - Larry Horowitz
- National Oceanic and Atmospheric Administration; Geophysical Fluid Dynamics Laboratory; Princeton New Jersey USA
| | - Owen Cooper
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- National Oceanic and Atmospheric Administration; Aeronomy Laboratory; Boulder Colorado USA
| | - Rynda Hudman
- Division of Engineering and Applied Sciences and Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - Daniel J. Jacob
- Division of Engineering and Applied Sciences and Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - Sam Oltmans
- National Oceanic and Atmospheric Administration; Aeronomy Laboratory; Boulder Colorado USA
| | - Andrew Clarke
- National Oceanic and Atmospheric Administration; Aeronomy Laboratory; Boulder Colorado USA
| |
Collapse
|
6
|
Dreyfus GB. Observational constraints on the contribution of isoprene oxidation to ozone production on the western slope of the Sierra Nevada, California. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd001490] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|