1
|
Mitchell ME, Newcomer-Johnson T, Christensen J, Crumpton W, Dyson B, Canfield TJ, Helmers M, Forshay KJ. A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt Region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119220. [PMID: 37866183 PMCID: PMC11773691 DOI: 10.1016/j.jenvman.2023.119220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Edge-of-field management practices that reduce nutrient pollution from tile drainage while contributing habitat and other ecosystem services are needed to enhance agricultural systems in the US Corn Belt Region. In this review, we identified edge-of-field and catchment scale agricultural conservation practices for intercepting and treating tile drainage. The reviewed conservation practices were (1) controlled drainage, also known as drainage water management (USDA-NRCS Code 554); (2) drainage water recycling (USDA-NRCS Code 447); (3) denitrifying bioreactors (USDA-NRCS Code 605); (4) saturated buffers (USDA-NRCS Code 604); and (5) constructed or restored wetlands designed for water quality improvement (USDA-NRCS Code 656) herein referred to as water quality wetlands. We examined 119 studies that had information on one or more of the following ecosystem services: water retention, water quality improvement (e.g., nitrate, phosphate, sediment, or pesticide retention), wetland habitat (for birds, aquatic organisms, and pollinators), crop yield improvement, and other benefits (e.g., recreation, education, aesthetic appreciation, greenhouse gas retention). We found the five edge-of-field practices were all effective at removing nitrate with varying degrees of other potential benefits and disservices (e.g., greenhouse gas production). Drainage water recycling and water quality wetlands have the potential to provide the most co-benefits as they provide surface water systems for capturing surface flows in addition to tile drainage while also potentially providing habitat and recreation opportunities. However, the following research needs are identified: 1) the disservices and benefits associated with drainage water recycling have not been adequately evaluated; 2) surface flow dynamics are understudied across all reviewed management practices; 3) a complete accounting of phosphorus species and flow pathways for all management practices is needed; 4) field evaluations of the habitat benefit of all management practices are needed; and 5) greenhouse gas dynamics are understudied across all management practices. While all management practices are expected to reduce nitrate loads, addressing these knowledge gaps will help inform holistic management decisions for diverse stakeholders across the US Corn Belt.
Collapse
Affiliation(s)
- Mark E Mitchell
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Tammy Newcomer-Johnson
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jay Christensen
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - William Crumpton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, 2200 Osborn Dr., Ames, IA 50011, USA
| | - Brian Dyson
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Timothy J Canfield
- Office of Research and Development, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Matthew Helmers
- Department of Agricultural and Biosystems Engineering, Iowa State University, 4354 Elings, 605 Bissell Rd., Ames, IA 50011, USA
| | - Kenneth J Forshay
- Office of Research and Development, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
2
|
Effects of Drainage Water Management in a Corn–Soy Rotation on Soil N2O and CH4 Fluxes. NITROGEN 2022. [DOI: 10.3390/nitrogen3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drainage water management (DWM), also known as controlled drainage, is a best management practice (BMP) deployed on drainage ditches with demonstrated success at reducing dissolved nitrogen export from agricultural fields. By slowing discharge from agricultural ditches, subsequent anaerobic soil conditions provide an environment for nitrate to be reduced via denitrification. Despite this success, incomplete denitrification might increase nitrous oxide (N2O) emissions and more reducing conditions might increase methanogenesis, resulting in increased methane (CH4) emissions. These two gases, N2O and CH4, are potent greenhouse gases (GHG) and N2O also depletes stratospheric ozone. This potential pollution swapping of nitrate reduction for GHG production could negatively impact the desirability of this BMP. We conducted three years of static chamber measurements of GHG emissions from the soil surface in farm plots with and without DWM in a corn–soybean rotation on the Delmarva Peninsula. We found that DWM raised the water table at the drainage ditch edge, but had no statistically significant effect on water-filled pore space in the field soil surface. Nor did we find a significant effect of DWM on GHG emissions. These findings are encouraging and suggest that, at least for this farm site, DWM can be used to remove nitrate without a significant tradeoff of increased GHG emissions.
Collapse
|
3
|
Carstensen MV, Hashemi F, Hoffmann CC, Zak D, Audet J, Kronvang B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. AMBIO 2020; 49:1820-1837. [PMID: 32494964 PMCID: PMC7502647 DOI: 10.1007/s13280-020-01345-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Diffusive losses of nitrogen and phosphorus from agricultural areas have detrimental effects on freshwater and marine ecosystems. Mitigation measures treating drainage water before it enters streams hold a high potential for reducing nitrogen and phosphorus losses from agricultural areas. To achieve a better understanding of the opportunities and challenges characterising current and new drainage mitigation measures in oceanic and continental climates, we reviewed the nitrate and total phosphorus removal efficiency of: (i) free water surface constructed wetlands, (ii) denitrifying bioreactors, (iii) controlled drainage, (iv) saturated buffer zones and (v) integrated buffer zones. Our data analysis showed that the load of nitrate was substantially reduced by all five drainage mitigation measures, while they mainly acted as sinks of total phosphorus, but occasionally, also as sources. The various factors influencing performance, such as design, runoff characteristics and hydrology, differed in the studies, resulting in large variation in the reported removal efficiencies.
Collapse
Affiliation(s)
| | - Fatemeh Hashemi
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | | | - Dominik Zak
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Joachim Audet
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Brian Kronvang
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| |
Collapse
|
4
|
Carstensen MV, Børgesen CD, Ovesen NB, Poulsen JR, Hvid SK, Kronvang B. Controlled Drainage as a Targeted Mitigation Measure for Nitrogen and Phosphorus. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:677-685. [PMID: 31180423 DOI: 10.2134/jeq2018.11.0393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drainage systems provide a more or less direct conduit for excess water and nutrients from fields to surface water. High nutrient loads to streams and lakes are known to adversely affect water quality and may potentially cause algae blooms. Therefore, in-field as well as edge-of-field mitigation measures that can assist in reducing the loss of nutrients are needed. The aim of this study was to investigate the effectiveness and possibility of using controlled drainage during the drainage season to reduce nutrient losses while growing a winter crop in a temperate climate. The 3-yr-long (2012-2015) study was conducted on four experimental field plots on loamy soil. The impacts of controlled drainage on groundwater levels, drain flow, and water quality at regulation levels of 50 and 70 cm above the conventional drain pipe level were determined by using a before-after control-impact study design. A regulation level of 70 cm was required to significantly elevate groundwater levels and reduce the drain outflow and N and P loss, which decreased by 37 to 54%, 38 to 51%, and 43 to 46%, respectively, relative to conventional drainage levels. Denitrification in the root zone, as measured with stable isotopes, was not markedly enhanced at the plots with controlled drainage, except on a few occasions. Resetting the groundwater level to conventional levels in early spring only had a marginal influence on water and nutrient losses. Thus, potential water quality tradeoffs (e.g., increased N loss to groundwater) need to be more thoroughly investigated before implementing controlled drainage as a mitigation measure in Denmark.
Collapse
|
5
|
Wilkes G, Sunohara MD, Topp E, Gottschall N, Craiovan E, Frey SK, Lapen DR. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds? WATER RESEARCH 2019; 151:423-438. [PMID: 30639728 DOI: 10.1016/j.watres.2018.11.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Predicting bacterial levels in watersheds in response to agricultural beneficial management practices (BMPs) requires understanding the germane processes at both the watershed and field scale. Controlling subsurface tile drainage (CTD) is a highly effective BMP at reducing nutrient losses from fields, and watersheds when employed en masse, but little work has been conducted on CTD effects on bacterial loads and densities in a watershed context. This study compared fecal indicator bacteria (FIB) [E. coli, Enterococcus, Fecal coliform, Total coliform, Clostridium perfringens] densities and unit area loads (UAL) from a pair of flat tile-drained watersheds (∼250-467 ha catchment areas) during the growing season over a 10-year monitoring period, using a before-after-control-impact (BACI) design (i.e., test CTD watershed vs. reference uncontrolled tile drainage (UCTD) watershed during a pre CTD intervention period and a CTD-intervention period where the test CTD watershed had CTD deployed on over 80% of the fields). With no tile drainage management, upstream tile drainage to ditches comprised ∼90% of total ditch discharge. We also examined FIB loads from a subset of tile drained fields to determine field load contributions to the watershed drainage ditches. Statistical evidence of a CTD effect on FIB UAL in the surface water systems was not strong; however, there was statistical evidence of increased FIB densities [pronounced when E. coli >200 most probable number (MPN) 100 mL-1] in the test CTD watershed during the CTD-intervention period. This was likely a result of reduced dilution/flushing in the test CTD watershed ditch due to CTD significantly decreasing the amount of tile drainage water entering the surface water system. Tile E. coli load contributions to the ditches were low; for example, during the 6-yr CTD-intervention period they amounted to on average only ∼3 and ∼9% of the ditch loads for the test CTD and reference UCTD watersheds, respectively. This suggests in-stream, or off-field FIB reservoirs and bacteria mobilization drivers, dominated ditch E. coli loads in the watersheds during the growing season. Overall, this study suggested that decision making regarding deployment of CTD en masse in tile-fed watersheds should consider drainage practice effects on bacterial densities and loads, as well as CTD's documented capacity to boost crop yields and reduce seasonal nutrient pollution.
Collapse
Affiliation(s)
- G Wilkes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - M D Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ONT, N5V 4T3, Canada
| | - N Gottschall
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - S K Frey
- Aquanty Inc, Waterloo, ONT, N2L 5C6, Canada; Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada.
| |
Collapse
|
6
|
Coyotzi S, Doxey AC, Clark ID, Lapen DR, Van Cappellen P, Neufeld JD. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ Microbiol 2017; 19:1189-1208. [PMID: 27943515 DOI: 10.1111/1462-2920.13643] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 11/04/2016] [Accepted: 12/03/2016] [Indexed: 11/27/2022]
Abstract
Denitrification transforms nitrogen applied as fertilizer and emits N2 O, which is a potent greenhouse gas. Very little is known about the identities of abundant and active denitrifiers in agricultural soils. We coupled DNA stable-isotope probing (DNA-SIP) with flow-through reactors (FTRs) to detect active agricultural soil denitrifiers. The FTRs were incubated with nitrate and 13 C6 -glucose under anoxic conditions and sampled at multiple time points. Labelled DNA from active microorganisms was analyzed by 16S rRNA gene fingerprinting, amplicon and shotgun metagenomic sequencing. Taxonomic representation of heavy fractions was consistent across sites and time points, including Betaproteobacteria (71%; Janthinobacterium, Acidovorax, Azoarcus and Dechloromonas), Alphaproteobacteria (8%; Rhizobium), Gammaproteobacteria (4%; Pseudomonas) and Actinobacteria (4%; Streptomycetaceae). Most nitrite-reductase reads from heavy DNA annotated to the copper-containing form (nirK). Assigned taxonomies of active denitrifiers based on reads matching the nirK gene were comparable to those obtained through nitric oxide (norB) and RNA polymerase (rpoB) annotations but not the nitrous oxide reductase gene (nosZ). Analysis of recovered metagenomes from heavy DNA demonstrated extensive nirK sequence family diversity, including novel taxonomic groups that are not captured by existing primers.
Collapse
Affiliation(s)
- Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ian D Clark
- Department of Earth Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - David R Lapen
- Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Philippe Van Cappellen
- Department of Earth and Environmental Sciences, Water Institute, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
7
|
|
8
|
Frey SK, Topp E, Khan IUH, Ball BR, Edwards M, Gottschall N, Sunohara M, Lapen DR. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:138-153. [PMID: 26065824 DOI: 10.1016/j.scitotenv.2015.03.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD.
Collapse
Affiliation(s)
- Steven K Frey
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Center, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada
| | - Bonnie R Ball
- Ontario Ministry of Agriculture, Food, and Rural Affairs, 581 Huron St, Stratford, Ontario N5A 5T8, Canada
| | - Mark Edwards
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada
| | - Natalie Gottschall
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada
| | - Mark Sunohara
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada
| | - David R Lapen
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Center, 960 Carling Drive, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
9
|
Sunohara MD, Gottschall N, Wilkes G, Craiovan E, Topp E, Que Z, Seidou O, Frey SK, Lapen DR. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1589-1604. [PMID: 26436276 DOI: 10.2134/jeq2015.01.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P during the growing season.
Collapse
|
10
|
Que Z, Seidou O, Droste RL, Wilkes G, Sunohara M, Topp E, Lapen DR. Using AnnAGNPS to Predict the Effects of Tile Drainage Control on Nutrient and Sediment Loads for a River Basin. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:629-641. [PMID: 26023981 DOI: 10.2134/jeq2014.06.0246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controlled tile drainage (CTD) can reduce pollutant loading. The Annualized Agricultural Nonpoint Source model (AnnAGNPS version 5.2) was used to examine changes in growing season discharge, sediment, nitrogen, and phosphorus loads due to CTD for a ∼3900-km agriculturally dominated river basin in Ontario, Canada. Two tile drain depth scenarios were examined in detail to mimic tile drainage control for flat cropland: 600 mm depth (CTD) and 200 mm (CTD) depth below surface. Summed for five growing seasons (CTD), direct runoff, total N, and dissolved N were reduced by 6.6, 3.5, and 13.7%, respectively. However, five seasons of summed total P, dissolved P, and total suspended solid loads increased as a result of CTD by 0.96, 1.6, and 0.23%. The AnnAGNPS results were compared with mass fluxes observed from paired experimental watersheds (250, 470 ha) in the river basin. The "test" experimental watershed was dominated by CTD and the "reference" watershed by free drainage. Notwithstanding environmental/land use differences between the watersheds and basin, comparisons of seasonal observed and predicted discharge reductions were comparable in 100% of respective cases. Nutrient load comparisons were more consistent for dissolved, relative to particulate water quality endpoints. For one season under corn crop production, AnnAGNPS predicted a 55% decrease (CTD) in dissolved N from the basin. AnnAGNPS v. 5.2 treats P transport from a surface pool perspective, which is appropriate for many systems. However, for assessment of tile drainage management practices for relatively flat tile-dominated systems, AnnAGNPS may benefit from consideration of P and particulate transport in the subsurface.
Collapse
|
11
|
Nash P, Nelson K, Motavalli P. Reducing nitrogen loss with managed drainage and polymer-coated urea. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:256-264. [PMID: 25602341 DOI: 10.2134/jeq2014.05.0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Continuous corn ( L.) production during dry years combined with high N fertilizer rates can have a high potential for NO-N loss through tile drainage water. Claypan soils can further increase the potential for NO-N loss through tile drainage water due to the claypan layer that restricts N leaching below the tile drains. The objective of this 4-yr study was to determine whether use of managed subsurface drainage (MD) in combination with a controlled-release N fertilizer could reduce the annual amount of NO-N loss through tile drainage water compared with free subsurface tile drainage (FD) with a noncoated urea application. Due to dry conditions over the summer and fall months, MD reduced the annual amount of water drained by at least 73% compared with FD in two of the four crop years. Low N loss and reduced corn N uptake possibly resulted in carry-over N and high soil N concentrations throughout the study, which may have limited the effect of N fertilizer source on annual NO-N loss in the tile drainage water. Use of MD reduced annual NO-N loss in the tile drainage water by 78 to 85% in two of the four years. High NO-N loss reduction with MD compared with FD was largely due to dry growing season conditions in combination with wet conditions over the noncropping period.
Collapse
|
12
|
Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management. Appl Environ Microbiol 2014; 80:3708-20. [PMID: 24727274 DOI: 10.1128/aem.00254-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.
Collapse
|