1
|
Roy C, He X, Gahtyari NC, Mahapatra S, Singh PK. Managing spot blotch disease in wheat: Conventional to molecular aspects. FRONTIERS IN PLANT SCIENCE 2023; 14:1098648. [PMID: 36895883 PMCID: PMC9990093 DOI: 10.3389/fpls.2023.1098648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Spot blotch (SB) caused by Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is one of the devastating diseases of wheat in the warm and humid growing areas around the world. B. sorokiniana can infect leaves, stem, roots, rachis and seeds, and is able to produce toxins like helminthosporol and sorokinianin. No wheat variety is immune to SB; hence, an integrated disease management strategy is indispensable in disease prone areas. A range of fungicides, especially the triazole group, have shown good effects in reducing the disease, and crop-rotation, tillage and early sowing are among the favorable cultural management methods. Resistance is mostly quantitative, being governed by QTLs with minor effects, mapped on all the wheat chromosomes. Only four QTLs with major effects have been designated as Sb1 through Sb4. Despite, marker assisted breeding for SB resistance in wheat is scarce. Better understanding of wheat genome assemblies, functional genomics and cloning of resistance genes will further accelerate breeding for SB resistance in wheat.
Collapse
Affiliation(s)
- Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University, Jodhpur, Rajasthan, India
| | - Xinyao He
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico DF, Mexico
| | - Navin C. Gahtyari
- Crop Improvement Division, ICAR–Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, Uttarakhand, India
| | - Sunita Mahapatra
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Pawan K. Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico DF, Mexico
| |
Collapse
|
2
|
Occurrence of Spot Blotch in Spring Barley Caused by Bipolaris sorokiniana Shoem. in South-Eastern Kazakhstan. ScientificWorldJournal 2022; 2022:3602996. [PMID: 36065336 PMCID: PMC9440638 DOI: 10.1155/2022/3602996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
In Kazakhstan, barley (Hordeum vulgare L.) is the second most important cereal crop after wheat, with an annual production of approximately 1.9 million tons. The study aimed to characterize Bipolaris sorokiniana isolates obtained from barley fields surveyed. A total of 21 diseased leaves showing spot blotch symptoms were collected from experimental plots located close to the Kazakh Research Institute of Agriculture and Crop Production, where the spring barley Arna cultivar was planted in June 2020. The overall strategy for control of spring barley blotch in the Almaty region of Kazakhstan should include the determination of the aggressiveness of the pathogen isolates to better understand the biology of the diseases and ultimately proper control strategy. Pathogenicity of B. sorokiniana isolates was made on barley seedlings in vitro. Inoculated seedlings showed clear symptoms of B. sorokiniana, and therefore, Koch's postulates were fulfilled by reisolating the pathogen from artificially inoculated seedlings and identifying it based on standard morphology criteria. Further investigation is needed to understand the impact of B. sorokiniana on barley production in Kazakhstan.
Collapse
|
3
|
Prasad R. Cytokinin and Its Key Role to Enrich the Plant Nutrients and Growth Under Adverse Conditions-An Update. Front Genet 2022; 13:883924. [PMID: 35795201 PMCID: PMC9252289 DOI: 10.3389/fgene.2022.883924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among the field crops, wheat is regarded as one of the most paramount cereal crops because it is widely grown, consumed as food across the world, and also known as the staple food for nearly 35 per cent of the world population. However, it is threatened by spot blotch disease causing considerable yield loss, with existing genotypes lacking the resistance and the necessary nutrients. Cytokinins (CKs) are key phytohormones that not only regulate the plant growth/development but also play an important role during stress and in the nutrient metabolic pathway of crop plants. Deficiency of important nutrients like zinc, iron, and vitamin A causes irreparable damage to the body, pressing the need to increase the accumulation of such micronutrients in the edible parts of the plant. Crop bio-fortification is one of the emerging approaches through which the quantities of these nutrients could be increased to an advisable amount. Cytokinin is observed to have a pivotal role in managing environmental stress/climate change and defense systems of plants, and apart from this, it is also found that it has an impact over Zn accumulation in cereal crops. Manipulation of the cytokine dehydrogenase (CKX) enzyme that degrades cytokinin could affect the yield, root growth, and important nutrients. Several instances revealed that an increment in the contents of Zn, S, Fe, and Mn in the seeds of cereals is a reflection of increasing the activity of CKX enzyme resulting the enhancement of the root system which not only helps in the absorption of water in a drought prone area but is also beneficial for scavenging nutrients to the deeper ends of the soil. Exploring micronutrients from the lithosphere via the root system helps in the uptake of the micronutrients and transporting them via the vascular system to the sink of crop plants, therefore, identification and incorporation of CKs/CKX linked gene(s) into targeted crop plants, exploring a bio-fortification approach including CRISPR-Cas9 through conventional and molecular breeding approaches could be the most paramount job for improving the important traits and stress management in order to enhance the plant growth, productivity, and nutritional value of the wheat crops, which would be useful for mankind.
Collapse
|
4
|
Juliana P, He X, Poland J, Roy KK, Malaker PK, Mishra VK, Chand R, Shrestha S, Kumar U, Roy C, Gahtyari NC, Joshi AK, Singh RP, Singh PK. Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1965-1983. [PMID: 35416483 PMCID: PMC9205839 DOI: 10.1007/s00122-022-04087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Genomic selection is a promising tool to select for spot blotch resistance and index-based selection can simultaneously select for spot blotch resistance, heading and plant height. A major biotic stress challenging bread wheat production in regions characterized by humid and warm weather is spot blotch caused by the fungus Bipolaris sorokiniana. Since genomic selection (GS) is a promising selection tool, we evaluated its potential for spot blotch in seven breeding panels comprising 6736 advanced lines from the International Maize and Wheat Improvement Center. Our results indicated moderately high mean genomic prediction accuracies of 0.53 and 0.40 within and across breeding panels, respectively which were on average 177.6% and 60.4% higher than the mean accuracies from fixed effects models using selected spot blotch loci. Genomic prediction was also evaluated in full-sibs and half-sibs panels and sibs were predicted with the highest mean accuracy (0.63) from a composite training population with random full-sibs and half-sibs. The mean accuracies when full-sibs were predicted from other full-sibs within families and when full-sibs panels were predicted from other half-sibs panels were 0.47 and 0.44, respectively. Comparison of GS with phenotypic selection (PS) of the top 10% of resistant lines suggested that GS could be an ideal tool to discard susceptible lines, as greater than 90% of the susceptible lines discarded by PS were also discarded by GS. We have also reported the evaluation of selection indices to simultaneously select non-late and non-tall genotypes with low spot blotch phenotypic values and genomic-estimated breeding values. Overall, this study demonstrates the potential of integrating GS and index-based selection for improving spot blotch resistance in bread wheat.
Collapse
Affiliation(s)
- Philomin Juliana
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Jesse Poland
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Krishna K Roy
- Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Paritosh K Malaker
- Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Vinod K Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - Navin C Gahtyari
- ICAR-Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Arun K Joshi
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
- CIMMYT-India, NASC Complex, DPS Marg, New Delhi, India
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
5
|
Juliana P, He X, Poland J, Shrestha S, Joshi AK, Huerta-Espino J, Govindan V, Crespo-Herrera LA, Mondal S, Kumar U, Bhati PK, Vishwakarma M, Singh RP, Singh PK. Genome-Wide Association Mapping Indicates Quantitative Genetic Control of Spot Blotch Resistance in Bread Wheat and the Favorable Effects of Some Spot Blotch Loci on Grain Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:835095. [PMID: 35310648 PMCID: PMC8928540 DOI: 10.3389/fpls.2022.835095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013-2014 and 2019-2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.
Collapse
Affiliation(s)
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jesse Poland
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Arun K. Joshi
- Borlaug Institute for South Asia (BISA), Ludhiana, India
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico, Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP), Chapingo, Mexico
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Pradeep K. Bhati
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| | - Manish Vishwakarma
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
6
|
Gahtyari NC, Roy C, He X, Roy KK, Reza MMA, Hakim MA, Malaker PK, Joshi AK, Singh PK. Identification of QTLs for Spot Blotch Resistance in Two Bi-Parental Mapping Populations of Wheat. PLANTS 2021; 10:plants10050973. [PMID: 34068273 PMCID: PMC8153151 DOI: 10.3390/plants10050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Spot blotch (SB) disease caused by the hemibiotrophic pathogen Bipolaris sorokiniana inflicting major losses to the wheat grown in warm and highly humid areas of the Indian subcontinent, including Bangladesh, necessitates identification of QTLs stably expressing in Indian subcontinent conditions. Thus, two RIL mapping populations, i.e., WC (WUYA × CIANO T79) and KC (KATH × CIANO T79), were phenotyped at Dinajpur, Bangladesh for three consecutive years (2013-2015) and genotyped on a DArTseq genotyping by sequencing (GBS) platform at CIMMYT, Mexico. In both populations, quantitative inheritance along with transgressive segregation for SB resistance was identified. The identified QTLs were mostly minor and were detected on 10 chromosomes, i.e., 1A, 1B, 2A, 2B, 2D, 4B, 4D, 5A, 5D, and 7B. The phenotypic variation explained by the identified QTLs ranged from 2.3–15.0%, whereby QTLs on 4B (13.7%) and 5D (15.0%) were the largest in effect. The identified QTLs upon stacking showed an additive effect in lowering the SB score in both populations. The probable presence of newly identified Sb4 and durable resistance gene Lr46 in the identified QTL regions indicates the importance of these genes in breeding for SB resistance in Bangladesh and the whole of South Asia.
Collapse
Affiliation(s)
- Navin C. Gahtyari
- ICAR—Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, Uttarakhand 263601, India;
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bihar 813210, India;
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Mohamed M. A. Reza
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Md. A. Hakim
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Paritosh K. Malaker
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Arun K. Joshi
- CIMMYT/Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India;
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
- Correspondence:
| |
Collapse
|
7
|
Hýsek J, Vavera R, Růžek P. Cultivation Intensity in Combination with Other Ecological Factors as Limiting Ones for the Abundance of Phytopathogenic Fungi on Wheat. MICROBIAL ECOLOGY 2019; 78:565-574. [PMID: 30895363 DOI: 10.1007/s00248-019-01337-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In field and laboratory experiments during 2014-2017, we investigated the influence of lower and higher cultivation intensity of wheat and ecological factors (weather-temperature and rainfalls, year) on the occurrence of phytopathogenic fungi on the leaves of winter wheat. The prevailing fungi in those years were Mycosphaerella graminicola (Fuckel) J. Schrott and Pyrenophora tritici-repentis (Died.) Drechsler. Using cluster analysis, we statistically evaluated interrelationships of known factors on the abundance of the fungi on leaf surfaces. Our results showed strongest correlation with Mycosphaerella graminicola and Pyrenophora tritici-repentis abundance to be with lower cultivation intensity and year done by the temperature and the rainfalls. The two pathogens-Puccinia tritici Oerst and Hymenula cerealis Ellis & Everh. occurred only very sparsely in some years and had little positive or negative correlation with named factors. The semi-early and semi-late winter wheat varieties Matchball, Annie, Fakir, and Tobak were used for our experiments. Higher cultivation intensity had protective effect against leaf phytopathogenic fungi.
Collapse
Affiliation(s)
- Josef Hýsek
- Crop Research Institute (CRI), Ruzyně, Prague 6, Czech Republic.
| | - Radek Vavera
- Crop Research Institute (CRI), Ruzyně, Prague 6, Czech Republic
| | - Pavel Růžek
- Crop Research Institute (CRI), Ruzyně, Prague 6, Czech Republic
| |
Collapse
|
8
|
Singh PK, He X, Sansaloni CP, Juliana P, Dreisigacker S, Duveiller E, Kumar U, Joshi AK, Singh RP. Resistance to Spot Blotch in Two Mapping Populations of Common Wheat Is Controlled by Multiple QTL of Minor Effects. Int J Mol Sci 2018; 19:ijms19124054. [PMID: 30558200 PMCID: PMC6321084 DOI: 10.3390/ijms19124054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT’s Agua Fria station for three consecutive years, from the 2012–2013 to 2014–2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7–27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Carolina Paola Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Etienne Duveiller
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Uttam Kumar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| |
Collapse
|
9
|
Ayana GT, Ali S, Sidhu JS, Gonzalez Hernandez JL, Turnipseed B, Sehgal SK. Genome-Wide Association Study for Spot Blotch Resistance in Hard Winter Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:926. [PMID: 30034404 PMCID: PMC6043670 DOI: 10.3389/fpls.2018.00926] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/11/2018] [Indexed: 05/06/2023]
Abstract
Spot blotch (SB) caused by Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is an economically important disease of wheat worldwide. Under a severe epidemic condition, the disease can cause yield losses up to 70%. Previous approaches like bi-parental mapping for identifying SB resistant genes/QTLs exploited only a limited portion of the available genetic diversity with a lower capacity to detect polygenic traits, and had a lower marker density. In this study, we performed genome-wide association study (GWAS) for SB resistance in hard winter wheat association mapping panel (HWWAMP) of 294 genotypes. The HWWAMP was evaluated for response to B. sorokiniana (isolate SD40), and a range of reactions was observed with 10 resistant, 38 moderately resistant, 120 moderately resistant- moderately susceptible, 111 moderately susceptible, and 15 susceptible genotypes. GWAS using 15,590 high-quality SNPs and 294 genotypes we identified six QTLs (p = <0.001) on chromosomes 2D, 3A, 4A, 4B, 5A, and 7B that collectively explained 30% of the total variation for SB resistance. Highly associated SNPs were identified for all six QTLs, QSb.sdsu-2D.1 (SNP: Kukri_c31121_1460, R2 = 4%), QSb.sdsu-3A.1 (SNP: Excalibur_c46082_440, R2 = 4%), QSb.sdsu-4A.1 (SNP: IWA8475, R2 = 5.5%), QSb.sdsu-4B.1 (SNP: Excalibur_rep_c79414_306, R2 = 4%), QSb.sdsu-5A.1 (SNP: Kukri_rep_c104877_2166, R2 = 6%), and QSb.sdsu-7B.1 (SNP: TA005844-0160, R2 = 6%). Our study not only validates three (2D, 5A, and 7B) genomic regions identified in previous studies but also provides highly associated SNP markers for marker assisted selection. In addition, we identified three novel QTLs (QSb.sdsu-3A.1, QSb.sdsu-4A.1, and QSb.sdsu-4B.1) for SB resistance in wheat. Gene annotation analysis of the candidate regions identified nine NBS-LRR and 38 other plant defense-related protein families across multiple QTLs, and these could be used for fine mapping and further characterization of SB resistance in wheat. Comparative analysis with barley indicated the SB resistance locus on wheat chromosomes 2D, 3A, 5A, and 7B identified in our study are syntenic to the previously identified SB resistance locus on chromosomes 2H, 3H, 5H, and 7H in barley. The 10 highly resistant genotypes and SNP markers identified in our study could be very useful resources for breeding of SB resistance in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunish K. Sehgal
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
10
|
Ayana GT, Ali S, Sidhu JS, Gonzalez Hernandez JL, Turnipseed B, Sehgal SK. Genome-Wide Association Study for Spot Blotch Resistance in Hard Winter Wheat. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30034404 DOI: 10.3389/fpls00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spot blotch (SB) caused by Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is an economically important disease of wheat worldwide. Under a severe epidemic condition, the disease can cause yield losses up to 70%. Previous approaches like bi-parental mapping for identifying SB resistant genes/QTLs exploited only a limited portion of the available genetic diversity with a lower capacity to detect polygenic traits, and had a lower marker density. In this study, we performed genome-wide association study (GWAS) for SB resistance in hard winter wheat association mapping panel (HWWAMP) of 294 genotypes. The HWWAMP was evaluated for response to B. sorokiniana (isolate SD40), and a range of reactions was observed with 10 resistant, 38 moderately resistant, 120 moderately resistant- moderately susceptible, 111 moderately susceptible, and 15 susceptible genotypes. GWAS using 15,590 high-quality SNPs and 294 genotypes we identified six QTLs (p = <0.001) on chromosomes 2D, 3A, 4A, 4B, 5A, and 7B that collectively explained 30% of the total variation for SB resistance. Highly associated SNPs were identified for all six QTLs, QSb.sdsu-2D.1 (SNP: Kukri_c31121_1460, R2 = 4%), QSb.sdsu-3A.1 (SNP: Excalibur_c46082_440, R2 = 4%), QSb.sdsu-4A.1 (SNP: IWA8475, R2 = 5.5%), QSb.sdsu-4B.1 (SNP: Excalibur_rep_c79414_306, R2 = 4%), QSb.sdsu-5A.1 (SNP: Kukri_rep_c104877_2166, R2 = 6%), and QSb.sdsu-7B.1 (SNP: TA005844-0160, R2 = 6%). Our study not only validates three (2D, 5A, and 7B) genomic regions identified in previous studies but also provides highly associated SNP markers for marker assisted selection. In addition, we identified three novel QTLs (QSb.sdsu-3A.1, QSb.sdsu-4A.1, and QSb.sdsu-4B.1) for SB resistance in wheat. Gene annotation analysis of the candidate regions identified nine NBS-LRR and 38 other plant defense-related protein families across multiple QTLs, and these could be used for fine mapping and further characterization of SB resistance in wheat. Comparative analysis with barley indicated the SB resistance locus on wheat chromosomes 2D, 3A, 5A, and 7B identified in our study are syntenic to the previously identified SB resistance locus on chromosomes 2H, 3H, 5H, and 7H in barley. The 10 highly resistant genotypes and SNP markers identified in our study could be very useful resources for breeding of SB resistance in wheat.
Collapse
Affiliation(s)
- Girma T Ayana
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Brent Turnipseed
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
11
|
Elsherbiny E, Safwat N, Elaasser M. Fungitoxicity of organic extracts ofOcimum basilicumon growth and morphogenesis ofBipolarisspecies (teleomorphCochliobolus). J Appl Microbiol 2017; 123:841-852. [DOI: 10.1111/jam.13543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 11/27/2022]
Affiliation(s)
- E.A. Elsherbiny
- Department of Plant Pathology; Faculty of Agriculture; Mansoura University; Mansoura 35516 Egypt
| | - N.A. Safwat
- Regional Center for Mycology and Biotechnology; Al-Azhar University; Cairo Egypt
| | - M.M. Elaasser
- Regional Center for Mycology and Biotechnology; Al-Azhar University; Cairo Egypt
| |
Collapse
|
12
|
Hýsek J, Vavera R, Růžek P. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:967-975. [PMID: 27975117 DOI: 10.1007/s00484-016-1276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/05/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).
Collapse
Affiliation(s)
- Josef Hýsek
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic.
| | - Radek Vavera
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic
| | - Pavel Růžek
- Crop Research Institute (CRI), Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
13
|
Phenotyping at hot spots and tagging of QTLs conferring spot blotch resistance in bread wheat. Mol Biol Rep 2016; 43:1293-1303. [PMID: 27562852 DOI: 10.1007/s11033-016-4066-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Spot blotch is a major foliar disease of wheat caused by Bipolaris sorokiniana in warm and humid environments of the world including South Asian countries. In India, it has a larger impact in Indo-Gangetic plains of the country. Therefore, the present study was undertaken to phenotype a mapping population at different hot spots of India and to detect quantitative trait loci (QTL) for resistance to spot blotch in wheat. For this study, 209 single seed descent (SSD) derived F8, F9, F10 recombinant inbred lines (RILs) of the cross 'Sonalika' (an Indian susceptible cultivar)/'BH 1146' (a Brazilian resistant cultivar) were assessed for spot blotch resistance at two hot spot locations (Coochbehar and Kalyani) for three years and for two years under controlled conditions in the polyhouse (Karnal). The population showed large variation in spot blotch reaction for disease severity in all the environments indicating polygenic nature of the disease. Microsatellite markers were used to create the linkage maps. Joint and/or individual year analysis by composite interval mapping (CIM) and likelihood of odds ratio (LOD) >2.1, detected two consistent QTLs mapped on chromosome 7BL and 7DL and these explained phenotypic variation of 11.4 percent and 9.5 percent over the years and locations, respectively. The resistance at these loci was contributed by the parent 'BH 1146' and shown to be independent of plant height and earliness. Besides, association of some agro-morphological traits has also been observed with percent disease severity. These identified genomic regions may be used in future wheat breeding programs through marker assisted selection for developing spot blotch resistant cultivars.
Collapse
|
14
|
Kumar U, Joshi AK, Kumar S, Chand R, Röder MS. Mapping of resistance to spot blotch disease caused by Bipolaris sorokiniana in spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:783-92. [PMID: 19066842 DOI: 10.1007/s00122-008-0938-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 11/13/2008] [Indexed: 05/13/2023]
Abstract
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat growing regions of the world. The development of disease resistant cultivars is considered as the most effective control strategy for spot blotch. An intervarietal mapping population in the form of recombinant inbred lines (RILs) was developed from a cross 'Yangmai 6' (a Chinese source of resistance) x 'Sonalika' (a spot blotch susceptible cultivar). The 139 single seed descent (SSD) derived F(6), F(7), F(8) lines of 'Yangmai 6' x 'Sonalika' were evaluated for resistance to spot blotch in three blocks in each of the 3 years. Joint and/or single year analysis by composite interval mapping (CIM) and likelihood of odd ratio (LOD) >2.2, identified four quantitative trait loci (QTL) on the chromosomes 2AL, 2BS, 5BL and 6DL. These QTLs were designated as QSb.bhu-2A, QSb.bhu-2B, QSb.bhu-5B and QSb.bhu-6D, respectively. A total of 63.10% of phenotypic variation was explained by these QTLs based on the mean over years. Two QTLs on chromosomes 2B and 5B with major effects were consistent over 3 years. All QTL alleles for resistance were derived from the resistant parent 'Yangmai 6'.
Collapse
Affiliation(s)
- Uttam Kumar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
15
|
Drader T, Johnson K, Brueggeman R, Kudrna D, Kleinhofs A. Genetic and physical mapping of a high recombination region on chromosome 7H(1) in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:811-820. [PMID: 19139841 DOI: 10.1007/s00122-008-0941-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/21/2008] [Indexed: 05/27/2023]
Abstract
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2-5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2-102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified.
Collapse
Affiliation(s)
- Tom Drader
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
16
|
Kuldeep T, Nandan R, Kumar U, Prasad LC, Chand R, Joshi AK. Inheritance and identification of molecular markers associated with spot blotch (Cochliobolus sativus L.) resistance through microsatellites analysis in barley. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000400021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Pandey SP, Sharma S, Chand R, Shahi P, Joshi AK. Clonal Variability and Its Relevance in Generation of New Pathotypes in the Spot Blotch Pathogen, Bipolaris sorokiniana. Curr Microbiol 2007; 56:33-41. [PMID: 17909887 DOI: 10.1007/s00284-007-9034-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spot blotch pathogen Bipolaris sorokiniana of wheat was investigated with threefold objectives: to establish a relationship between morphological and pathological variability of isolates, identify clonal genotype(s) acting as a source for the generation of new variability, and to determine the mechanism of generation of such variability in the pathogen. Isolates were collected from the leaves and seeds of field-grown wheat crop at four different sites in eastern Gangetic plains of India. Eighty-six clonal isolates derived from a single isolate (gray with white patches, Group III), which segregated in an equal proportion of parental and nonparental types, were studied. Morphological characters-i.e., colony morphology, growth rate, and sporulation-were studied along with disease-causing ability of the isolate clones. Clonal isolates were grouped into three categories. Microscopic analysis of nuclei was done to determine the causes of such variability. Morphological variability appeared to be related to the pathological variability. The isolate having epidemic potential appeared different than that acting as the reservoir for variability. The cause of such variability could be attributed either to hyphal fusion and heterokaryosis, nuclear migration and occurrence of multinucleate state, or a combination of these factors. Random Amplified Polymorphic DNA (RAPD) assay suggested that the unique fragments for different groups could be utilized as molecular markers to identify the isolates of specific groups.
Collapse
Affiliation(s)
- Shree P Pandey
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | | | |
Collapse
|
18
|
Jaiswal SK, Prasad LC, Sharma S, Kumar S, Prasad R, Pandey SP, Chand R, Joshi AK. Identification of Molecular Marker and Aggressiveness for Different Groups of Bipolaris sorokiniana Isolates Causing Spot Blotch Disease in Wheat (Triticum aestivum L.). Curr Microbiol 2007; 55:135-41. [PMID: 17647080 DOI: 10.1007/s00284-007-0035-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
One hundred fifty-five isolates of Bipolaris sorokiniana of wheat were studied for their morphopathological characterization. These isolates were grouped in five categories--black, brown/dull black, gray cottony growth, dull white/greenish black, and white--on the basis of their growth pattern. The frequency of the black suppressed type was maximum (45.63%), whereas the white isolate displayed lowest frequency (6.96%) in the natural population. Twenty RAPD (random amplified polymorphic DNA) primers were used to observe the variability among the identified groups of B. sorokininana. From each group, eight random isolates were investigated. A total of 143 bands were amplified, out of which 107 (74.83%) were polymorphic and 36 (25.17%) were monomorphic. On an average, the total numbers of bands generated per primer were 7.15, of which 5.35 and 1.80 were polymorphic and monomorphic, respectively. Dendrograms based on molecular polymorphism unveiled a considerable amount of diversity among the isolates. Specific DNA bands were identified for selected isolates. The distinct markers appeared to be potential enough to be employed as genetic fingerprints for future strain identification and classification. The study indicated that the RAPD primers provide an easy, rapid, and simple technique for the preliminary assessment of genetic diversity among the fungal isolates.
Collapse
Affiliation(s)
- S K Jaiswal
- Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | | | | | | | | | |
Collapse
|
19
|
A new technique for monoconidial culture of the most aggressive isolate in a given population of Bipolaris sorokiniana, cause of foliar spot blotch in wheat and barley. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9410-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bomblies K, Weigel D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 2007; 8:382-93. [PMID: 17404584 DOI: 10.1038/nrg2082] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ecological factors, hybrid sterility and differences in ploidy levels are well known for contributing to gene-flow barriers in plants. Another common postzygotic incompatibility, hybrid necrosis, has received comparatively little attention in the evolutionary genetics literature. Hybrid necrosis is associated with a suite of phenotypic characteristics that are similar to those elicited in response to various environmental stresses, including pathogen attack. The genetic architecture is generally simple, and complies with the Bateson-Dobzhansky-Muller model for hybrid incompatibility between species. We survey the extensive literature on this topic and present the hypothesis that hybrid necrosis can result from autoimmunity, perhaps as a pleiotropic effect of evolution of genes that are involved in pathogen response.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemanstrasse 37-39, 72076 Tübingen, Germany.
| | | |
Collapse
|
21
|
William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 2007; 49:977-90. [PMID: 17036073 DOI: 10.1139/g06-052] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.
Collapse
Affiliation(s)
- H M William
- International Maize and Wheat Improvement Center CIMMYT, Apdo-Postal, Mexico.
| | | | | | | | | |
Collapse
|
22
|
Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES. Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:500-8. [PMID: 16331478 DOI: 10.1007/s00122-005-0153-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/13/2005] [Indexed: 05/05/2023]
Abstract
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA x Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding beta-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.
Collapse
Affiliation(s)
- G M Rosewarne
- International Maize and Wheat Improvement Center (CIMMYT), Apartado Postal 6-641, 06600, Km. 45 Carretera Mexico-Veracruz, 56130 El Batan, Texcoco, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mateos-Hernandez M, Singh RP, Hulbert SH, Bowden RL, Huerta-Espino J, Gill BS, Brown-Guedira G. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Funct Integr Genomics 2005; 6:122-31. [PMID: 16374594 DOI: 10.1007/s10142-005-0017-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 11/29/2022]
Abstract
The gene Lr46 has provided slow-rusting resistance to leaf rust caused by Puccinia triticina in wheat (Triticum aestivum), which has remained durable for almost 30 years. Using linked markers and wheat deletion stocks, we located Lr46 in the deletion bin 1BL (0.84-0.89) comprising 5% of the 1BL arm. The distal part of chromosome 1BL of wheat is syntenic to chromosome 5L of rice. Wheat expressed sequence tags (ESTs) mapping in the terminal 15% of chromosome 1BL with significant homology to sequences from the terminal region of chromosome 5L of rice were chosen for sequence-tagged site (STS) primer design and were mapped physically and genetically. In addition, sequences from two rice bacterial artificial chromosome clones covering the targeted syntenic region were used to identify additional linked wheat ESTs. Fourteen new markers potentially linked to Lr46 were developed; eight were mapped in a segregating population. Markers flanking (2.2 cM proximal and 2.2 cM distal) and cosegregating with Lr46 were identified. The physical location of Lr46 was narrowed to a submicroscopic region between the breakpoints of deletion lines 1BL-13 [fraction length (FL)=0.89-1] and 1BL-10 (FL=0.89-3). We are now developing a high-resolution mapping population for the positional cloning of Lr46.
Collapse
|
24
|
Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:731-5. [PMID: 15965649 DOI: 10.1007/s00122-005-2058-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 04/26/2005] [Indexed: 05/03/2023]
Abstract
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F(7) lines derived from a Thatcher x Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.
Collapse
Affiliation(s)
- W Spielmeyer
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|