1
|
Kamal M, Lele W, Shuzhen T, Jiandi L, Rongyan Q, Yanfeng L, Wenqi W, Xiangyu C, Cheng Y. Influence of dietary Salicornia europaea L. extract supplementation on feed efficiency of Altay sheep by modifying their gastrointestinal bacteria communities. Front Microbiol 2024; 15:1377314. [PMID: 38680925 PMCID: PMC11045990 DOI: 10.3389/fmicb.2024.1377314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
This experiment aimed to examine the impact of Salicornia europaea L. extract on sheep growth performance, rumen fermentation variables, nutrient apparent digestibility, and gastrointestinal microbial diversity. Forty-eight male Altay sheep, weighing 32.5 ± 2.8 kg and approximately 3.5 months old, were chosen. Four dietary treatments, each consisting of four replicates and three sheep per replicate, were distributed randomly to the sheep. The pelleted total mixed ration containing Salicornia europaea L. extract at 0.0, 0.2, 0.4, and 0.6% DM was freely available to the sheep in the four treatment groups. The 56-day experiment consisted of 45 days of measurements followed by 11 days of adaptation. The growth performance was not affected by nutrition Salicornia europaea L. extract (p ≤ 0.05), but the feed-to-gain ratio was reduced when the extract was given at 0.4% DM (p ≤ 0.05). Compared to the 0 and 0.2% treatments, the apparent digestibility of DM, OM, NDF, and ADF was substantially greater in the 0.4, and 0.6% treatments. Furthermore, compared to sheep in the 0 and 0.2% groups, sheep in the 0.6% group had a noticeably higher apparent digestibility of CP. As the amount of Salicornia europaea L. extract added to the rumen fluid rose, the molar ratio of acetic acid increased. In contrast, the molar ratio of propionic acid gradually decreased, and the total volatile fatty acid content gradually reduced. Thus, adding a suitable quantity of Salicornia europaea L. extract to the sheep ration is natural and secure, which may improve the environmental sustainability of small ruminant production systems.
Collapse
Affiliation(s)
- Mahmoud Kamal
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Wang Lele
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Key Laboratory of Xinjiang Feed Biotechnology, Ürumqi, China
| | - Tang Shuzhen
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Key Laboratory of Xinjiang Feed Biotechnology, Ürumqi, China
| | - Liang Jiandi
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
| | - Qin Rongyan
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Key Laboratory of Xinjiang Feed Biotechnology, Ürumqi, China
| | - Liu Yanfeng
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Key Laboratory of Xinjiang Feed Biotechnology, Ürumqi, China
| | - Wang Wenqi
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
- Key Laboratory of Xinjiang Feed Biotechnology, Ürumqi, China
| | - Chen Xiangyu
- Feed Research Institute, Xinjiang Academy of Animal Sciences, Ürumqi, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Hossain MM, Cho SB, Kim IH. Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:237-250. [PMID: 38628679 PMCID: PMC11016746 DOI: 10.5187/jast.2024.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Sung Bo Cho
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
3
|
Cultivation and characterisation of Salicornia europaea, Tripolium pannonicum and Crithmum maritimum biomass for green biorefinery applications. Sci Rep 2022; 12:20507. [PMID: 36443447 PMCID: PMC9705282 DOI: 10.1038/s41598-022-24865-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Salt-tolerant halophytes have shown potential for biorefinery and agricultural use in salt-affected soils, increasing the value of marginal lands. They could provide a bio-based source for compounds obtained from the petrochemical industry or an alternative for biomass currently imported overseas. Salicornia europaea, Tripolium pannonicum and Crithmum maritimum were cultivated in hydroponic systems under various salinity conditions, harvested green but not food-grade, and fractionated to green juice and fibre residue. Obtained fractions were characterised for contents of carbohydrates, Klason lignin, crude protein, organic acids, lipids, and minerals to evaluate the biomass' suitability for biorefinery. Significant differences were observed in the biomass yield and the composition of the biomass fractions from different cultivation salinities. High concentrations of crude protein were found. Thus, these species could have the potential for green protein production. Fractions rich in carbohydrates could be used for lignocellulose processing and processes utilising micro-organisms.
Collapse
|
4
|
Dang DX, Lee IS, Kim IH. Effects of YGF251 on the growth performance, nutrient digestibility, meat quality, and fecal gas emission of finishing pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1801445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- De Xin Dang
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Il Seok Lee
- Department of General English, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|