1
|
Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2021; 8:8101-8115. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superhydrophilic and superhydrophobic surfaces are prevalent in nature and have received tremendous attention due to their importance in both fundamental research and practical applications. With the high interdisciplinary research and great development of microfabrication techniques, artificial wettable-nonwettable micropatterns inspired by the water-collection behavior of desert beetles have been successfully fabricated. A combination of the two extreme states of superhydrophilicity and superhydrophobicity on the same surface precisely, wettable-nonwettable micropatterns possess unique functionalities, such as controllable superwetting, anisotropic wetting, oriented adhesion, and other properties. In this review, we briefly describe the methods for fabricating wettable-nonwettable patterns, including self-assembly, electrodeposition, inkjet printing, and photolithography. We also highlight some of the emerging applications such as water collection, controllable bioadhesion, cell arrays, microreactors, printing techniques, and biosensors combined with various detection methods. Finally, the current challenges and prospects of this renascent and rapidly developing field are proposed and discussed.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China. and School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Starkuviene V, Kallenberger SM, Beil N, Lisauskas T, Schumacher BSS, Bulkescher R, Wajda P, Gunkel M, Beneke J, Erfle H. High-Density Cell Arrays for Genome-Scale Phenotypic Screening. SLAS DISCOVERY 2019; 24:274-283. [PMID: 30682322 DOI: 10.1177/2472555218818757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to high associated costs and considerable time investments of cell-based screening, there is a strong demand for new technologies that enable preclinical development and tests of diverse biologicals in a cost-saving and time-efficient manner. For those reasons we developed the high-density cell array (HD-CA) platform, which miniaturizes cell-based screening in the form of preprinted and ready-to-run screening arrays. With the HD-CA technology, up to 24,576 samples can be tested in a single experiment, thereby saving costs and time for microscopy-based screening by 75%. Experiments on the scale of the entire human genome can be addressed in a real parallel manner, with screening campaigns becoming more comfortable and devoid of robotics infrastructure on the user side. The high degree of miniaturization enables working with expensive reagents and rare and difficult-to-obtain cell lines. We have also optimized an automated imaging procedure for HD-CA and demonstrate the applicability of HD-CA to CRISPR-Cas9- and RNAi-mediated phenotypic assessment of the gene function.
Collapse
Affiliation(s)
- Vytaute Starkuviene
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,2 Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Stefan M Kallenberger
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,3 Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Beil
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Piotr Wajda
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Becker AK, Erfle H, Gunkel M, Beil N, Kaderali L, Starkuviene V. Comparison of Cell Arrays and Multi-Well Plates in Microscopy-Based Screening. High Throughput 2018; 7:ht7020013. [PMID: 29762489 PMCID: PMC6023461 DOI: 10.3390/ht7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
Multi-well plates and cell arrays enable microscopy-based screening assays in which many samples can be analysed in parallel. Each of the formats possesses its own strengths and weaknesses, but reference comparisons between these platforms and their application rationale is lacking. We aim to fill this gap by comparing two RNA interference (RNAi)-mediated fluorescence microscopy-based assays, namely epidermal growth factor (EGF) internalization and cell cycle progression, on both platforms. Quantitative analysis revealed that both platforms enabled the generation of data with the appearance of the expected phenotypes significantly distinct from the negative controls. The measurements of cell cycle progression were less variable in multi-well plates. The result can largely be attributed to higher cell numbers resulting in less data variability when dealing with the assay generating phenotypic cell subpopulations. The EGF internalization assay with a uniform phenotype over nearly the whole cell population performed better on cell arrays than in multi-well plates. The result was achieved by scoring five times less cells on cell arrays than in multi-well plates, indicating the efficiency of the cell array format. Our data indicate that the choice of the screening platform primarily depends on the type of the cellular assay to achieve a maximum data quality and screen efficiency.
Collapse
Affiliation(s)
- Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Holger Erfle
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Manuel Gunkel
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Nina Beil
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Biosciences, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
4
|
Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F. Living Cell Microarrays: An Overview of Concepts. MICROARRAYS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27600077 PMCID: PMC5003487 DOI: 10.3390/microarrays5020011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
Abstract
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.
Collapse
Affiliation(s)
- Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Tracy Kurth
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| |
Collapse
|
5
|
Schudel BR, Harmon B, Abhyankar VV, Pruitt BW, Negrete OA, Singh AK. Microfluidic platforms for RNA interference screening of virus-host interactions. LAB ON A CHIP 2013; 13:811-817. [PMID: 23361404 DOI: 10.1039/c2lc41165b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection. First, a multilayer polydimethylsiloxane (PDMS)-based spotting device was used to array siRNA molecules into 96 microwells targeting markers of endocytosis, along with siRNA controls. By using a PDMS-based spotting device, we remove the need for a microarray printer necessary to perform previously described small scale (e.g. cellular microarrays) and microchip-based RNAi screening, while still minimizing reagent usage tenfold compared to conventional screening. Second, the siRNA spotted array was transferred to a reversibly sealed PDMS-based screening platform containing microchannels designed to enable efficient cell loading and transfection of mammalian cells while preventing cross-contamination between experimental conditions. Validation of the screening platform was examined using Vesicular stomatitis virus and emerging pathogen Rift Valley fever virus, which demonstrated virus entry pathways of clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively. The techniques here are adaptable to other well-characterized infection pathways with a potential for large scale screening in high containment biosafety laboratories.
Collapse
Affiliation(s)
- Benjamin R Schudel
- Sandia National Laboratories, Department of Biotechnology and Bioengineering, Livermore, CA 94551, USA
| | | | | | | | | | | |
Collapse
|
6
|
Chen PC, Huang YY, Juang JL. MEMS microwell and microcolumn arrays: novel methods for high-throughput cell-based assays. LAB ON A CHIP 2011; 11:3619-25. [PMID: 21904742 DOI: 10.1039/c0lc00696c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although the cell-based assay is becoming more popular for high throughput drug screening and the functional characterization of disease-associated genes, most researchers in these areas do not use it because it is a complex and expensive process. We wanted to create a simple method of performing an on-chip cell-based assay. To do this, we used micro-electro-mechanical systems (MEMS) to fabricate a microwell array chip comprised of a glass substrate covered with a photoresist film patterned to form multiple microwells and tested it in two reverse transfection experiments, an exogenous gene expression study and an endogenous gene knockdown study. It was used effectively in both. Then, using the same MEMS technology, we fabricated a complementary microcolumn array to be used as a drug carrier device to topically apply drugs to cells cultured in the microwell array. We tested the effectiveness of microwell-microcolumn on-chip cell-based assay by using it in experiments to identify epidermal growth factor receptor (EGFR) activity inhibitors, for which it was found to provide effective high throughput and high content functional screening. In conclusion, this new method of cell-based screening proved to be a simple and efficient method of characterizing gene function and discovering drug leads.
Collapse
Affiliation(s)
- Po-Cheng Chen
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, 100, Taiwan
| | | | | |
Collapse
|
7
|
Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Superhydrophobic-Superhydrophilic Micropatterning: Towards Genome-on-a-Chip Cell Microarrays. Angew Chem Int Ed Engl 2011; 50:8424-7. [PMID: 21751312 DOI: 10.1002/anie.201102545] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Florian L Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Germany
| | | | | | | | | |
Collapse
|
8
|
Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Superhydrophob-superhydrophile Mikrostrukturen: Auf dem Weg zum Ein-Genom-Zellmikroarray. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|