1
|
Vandiver AR, Hoang AN, Herbst A, Lee CC, Aiken JM, McKenzie D, Teitell MA, Timp W, Wanagat J. Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging. Aging Cell 2023; 22:e13842. [PMID: 37132288 PMCID: PMC10265159 DOI: 10.1111/acel.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Division of Dermatology, Department of MedicineUCLALos AngelesCaliforniaUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Austin N. Hoang
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Allen Herbst
- US Geological Survey National Wildlife Health CenterMadisonWisconsinUSA
| | - Cathy C. Lee
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Judd M. Aiken
- Department of Agricultural, Food and Nutritional SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Debbie McKenzie
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Michael A. Teitell
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Bioengineering, California NanoSystems Institute, Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Winston Timp
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Devall M, Soanes DM, Smith AR, Dempster EL, Smith RG, Burrage J, Iatrou A, Hannon E, Troakes C, Moore K, O'Neill P, Al-Sarraj S, Schalkwyk L, Mill J, Weedon M, Lunnon K. Genome-wide characterization of mitochondrial DNA methylation in human brain. Front Endocrinol (Lausanne) 2023; 13:1059120. [PMID: 36726473 PMCID: PMC9885148 DOI: 10.3389/fendo.2022.1059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Darren M Soanes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca G Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Artemis Iatrou
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Moore
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul O'Neill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Leonard Schalkwyk
- School of Biological Sciences, University of Essex, Essex, United Kingdom
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael Weedon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Shaw AM, Gammage PA. Coupling Differential Centrifugation with Exonuclease Treatment and Size Exclusion Chromatography (DIFSEC) for Purification of mtDNA from Mammalian Cells. Methods Mol Biol 2023; 2615:31-40. [PMID: 36807782 DOI: 10.1007/978-1-0716-2922-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct analysis of mtDNA using PCR-free methods is limited by the presence of persistent, contaminating nucleic acids originating from the nuclear genome, even following stringent mitochondrial isolations. Here we describe a method developed in our laboratory that couples existing, commercially available mtDNA isolation protocols with exonuclease treatment and size exclusion chromatography (DIFSEC). This protocol produces highly enriched mtDNA extracts from small-scale cell culture, with near-undetectable nuclear DNA contamination.
Collapse
Affiliation(s)
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
6
|
Methods for simultaneous and quantitative isolation of mitochondrial DNA, nuclear DNA and RNA from mammalian cells. Biotechniques 2020; 69:436-442. [PMID: 33103926 DOI: 10.2144/btn-2020-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess two protocols for their capacities to simultaneously isolate RNA, mtDNA and ncDNA from mammalian cells. We compared the Invitrogen TRIzol-based method and Qiagen DNeasy columns, using the HepG2 cell line and human primary glioblastoma stem cells. Both methods allowed the isolation of all three types of nucleic acids and provided similar yields in mtDNA. However, the yield in ncDNA was more than tenfold higher on columns, as observed for both cell types. Conversely, the TRIzol method proved more reproducible and was the method of choice for isolating RNA from glioblastoma cells, as demonstrated for the housekeeping genes RPLP0 and RPS9.
Collapse
|
7
|
Abstract
Isolated mitochondria are useful to study fundamental processes including mitochondrial respiration, metabolic activity, protein import, membrane fusion, protein complex assembly, as well as interactions of mitochondria with the cytoskeleton, nuclear encoded mRNAs, and other organelles. In addition, studies of the mitochondrial proteome, phosphoproteome, and lipidome are dependent on preparation of highly purified mitochondria (Boldogh, Vojtov, Karmon, & Pon, 1998; Cui, Conte, Fox, Zara, & Winge, 2014; Marc et al., 2002; Meeusen, McCaffery, & Nunnari, 2004; Reinders et al., 2007; Schneiter et al., 1999; Stuart & Koehler, 2007). Most methods to isolate mitochondria rely on differential centrifugation, a two-step centrifugation carried out at low speed to remove intact cells, cell and tissue debris, and nuclei from whole cell extracts followed by high speed centrifugation to concentrate mitochondria and separate them from other organelles. However, methods to disrupt cells and tissue vary. Moreover, density gradient centrifugation or affinity purification of the organelle are used to further purify mitochondria or to separate different populations of the organelle. Here, we describe protocols to isolate mitochondria from different cells and tissues as well as approaches to assess the purity and integrity of isolated organelles.
Collapse
|
8
|
Bacon K, Burroughs M, Blain A, Menegatti S, Rao BM. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders. ACS COMBINATORIAL SCIENCE 2019; 21:817-832. [PMID: 31693340 DOI: 10.1021/acscombsci.9b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When isolating binders from yeast displayed combinatorial libraries, a soluble, recombinantly expressed form of the target protein is typically utilized. As an alternative, we describe the use of target proteins displayed as surface fusions on magnetized yeast cells. In our strategy, the target protein is coexpressed on the yeast surface with an iron oxide binding protein; incubation of these yeast cells with iron oxide nanoparticles results in their magnetization. Subsequently, binder cells that interact with the magnetized target cells can be isolated using a magnet. Using a known binder-target pair with modest binding affinity (KD ≈ 400 nM), we showed that a binder present at low frequency (1 in 105) could be enriched more than 100-fold, in a single round of screening, suggesting feasibility of screening combinatorial libraries. Subsequently, we screened yeast display libraries of Sso7d and nanobody variants against yeast displayed targets to isolate binders specific to the cytosolic domain of the mitochondrial membrane protein TOM22 (KD ≈ 272-1934 nM) and the extracellular domain of the c-Kit receptor (KD ≈ 93 to KD > 2000 nM). Additional studies showed that the TOM22 binders identified using this approach could be used for the enrichment of mitochondria from cell lysates, thereby confirming binding to the native mitochondrial protein. The ease of expressing a membrane protein or a domain thereof as a yeast cell surface fusion-in contrast to recombinant soluble expression-makes the use of yeast-displayed targets particularly attractive. Therefore, we expect the use of magnetized yeast cell targets will enable efficient isolation of binders to membrane proteins.
Collapse
|
9
|
Discovery of a Ruthenium Complex for the Theranosis of Glioma through Targeting the Mitochondrial DNA with Bioinformatic Methods. Int J Mol Sci 2019; 20:ijms20184643. [PMID: 31546801 PMCID: PMC6770666 DOI: 10.3390/ijms20184643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most aggressive and lethal brain tumor in humans. Mutations of mitochondrial DNA (mtDNA) are commonly found in tumor cells and are closely associated with tumorigenesis and progress. However, glioma-specific inhibitors that reflect the unique feature of tumor cells are rare. Here we uncover RC-7, a ruthenium complex with strong red fluorescence, could bind with glioma mtDNA and then inhibited the growth of human glioma cells but not that of neuronal cells, liver, or endothelial cells. RC-7 significantly reduced energy production and increased the oxidative stress in the glioma cells. Administration of RC-7 into mice not only could be observed in the glioma mass of brain by fluorescence imaging, but also obviously prevented the growth of xenograft glioma and prolonged mouse survival days. The findings suggested the theranostic application of a novel type of complex through targeting the tumor mtDNA.
Collapse
|
10
|
Fractionated mitochondrial magnetic separation for isolation of synaptic mitochondria from brain tissue. Sci Rep 2019; 9:9656. [PMID: 31273236 PMCID: PMC6609636 DOI: 10.1038/s41598-019-45568-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
While mitochondria maintain essential cellular functions, such as energy production, calcium homeostasis, and regulating programmed cellular death, they also play a major role in pathophysiology of many neurological disorders. Furthermore, several neurodegenerative diseases are closely linked with synaptic damage and synaptic mitochondrial dysfunction. Unfortunately, the ability to assess mitochondrial dysfunction and the efficacy of mitochondrial-targeted therapies in experimental models of neurodegenerative disease and CNS injury is limited by current mitochondrial isolation techniques. Density gradient ultracentrifugation (UC) is currently the only technique that can separate synaptic and non-synaptic mitochondrial sub-populations, though small brain regions cannot be assayed due to low mitochondrial yield. To address this limitation, we used fractionated mitochondrial magnetic separation (FMMS), employing magnetic anti-Tom22 antibodies, to develop a novel strategy for isolation of functional synaptic and non-synaptic mitochondria from mouse cortex and hippocampus without the usage of UC. We compared the yield and functionality of mitochondria derived using FMMS to those derived by UC. FMMS produced 3x more synaptic mitochondrial protein yield compared to UC from the same amount of tissue, a mouse hippocampus. FMMS also has increased sensitivity, compared to UC separation, to measure decreased mitochondrial respiration, demonstrated in a paradigm of mild closed head injury. Taken together, FMMS enables improved brain-derived mitochondrial yield for mitochondrial assessments and better detection of mitochondrial impairment in CNS injury and neurodegenerative disease.
Collapse
|
11
|
Heteroplasmy Detection of Mitochondrial DNA A3243G Mutation Using Quantitative Real-Time PCR Assay Based on TaqMan-MGB Probes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1286480. [PMID: 30539000 PMCID: PMC6260548 DOI: 10.1155/2018/1286480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
A point mutation of mitochondrial DNA (mtDNA) at nucleotide position 3243 A to G (mt.3243A>G) is involved in many common diseases, including maternally inherited diabetes and deafness (MIDD) and mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes (MELAS). However, the mutant level of mt.3243A>G varies both among individuals and in different organs, tissues, and even cells of single individuals. For detection of this mutation, current methods have limited universality and sensitivity and may be not adequate for a routine clinical test. Here, we develop and evaluate a rapid TaqMan-MGB quantitative real-time PCR (qPCR) method for detecting and quantifying the heteroplasmy level of mt.3243A>G in single-tube analysis. With our method, the sensitivity of detection was as low as 0.1%, but the accuracy of quantification was reliable, down to 4%. All positives could be correctly identified, and the heteroplasmy levels determined by qPCR correlated well with the results from restriction fragment length polymorphism (RFLP) and pyrosequencing assays (r = 0.921~0.973 and 0.972~0.984). In addition, we demonstrated that the urinary sediments, leukocytes, or hair follicles might be ideal templates to detect and quantify the heteroplasmy of mt.3243A>G mutation; however, they should be optimized or retreated for further accurate quantification. Our study should allow rapid and high throughput diagnostic testing and can potentially be used to clarify the association between clinical phenotype and pathogenic mitochondrial mutations derived from various tissues.
Collapse
|
12
|
DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation. PLoS One 2017; 12:e0180467. [PMID: 28683077 PMCID: PMC5500342 DOI: 10.1371/journal.pone.0180467] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.
Collapse
|
13
|
Devall M, Smith RG, Jeffries A, Hannon E, Davies MN, Schalkwyk L, Mill J, Weedon M, Lunnon K. Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue. Clin Epigenetics 2017; 9:47. [PMID: 28473874 PMCID: PMC5415779 DOI: 10.1186/s13148-017-0337-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. Results We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions (p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples (N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Conclusions Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.
Collapse
Affiliation(s)
- Matthew Devall
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Rebecca G Smith
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Aaron Jeffries
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Eilis Hannon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Matthew N Davies
- Department of Twin Research & Genetic Epidemiology, King's College London, Lambeth Palace Road, London, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Michael Weedon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - Katie Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| |
Collapse
|
14
|
Smith AR, Mill J, Smith RG, Lunnon K. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Devall M, Roubroeks J, Mill J, Weedon M, Lunnon K. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies. Neurosci Lett 2016; 625:47-55. [PMID: 26876477 DOI: 10.1016/j.neulet.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field.
Collapse
Affiliation(s)
- Matthew Devall
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Janou Roubroeks
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, The Netherlands
| | - Jonathan Mill
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK; Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, De Crespigny Park, London, UK
| | - Michael Weedon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Katie Lunnon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK.
| |
Collapse
|