1
|
Sautrey G. An Update on Theoretical and Metrological Aspects of the Surface Hydrophobicity of Virus and Virus-Like Particles. Adv Biol (Weinh) 2024:e2400221. [PMID: 39435562 DOI: 10.1002/adbi.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs. In other words, whether wild or synthetic VPs and regardless of the scientific fields involved, taming viruses implies thus managing the physical chemistry at the VP external surface. The surface hydrophobicity (SH) of VPs is a critical feature that must be looked at. Still, the literature dealing with nanoscale hydrophobic domains at the proteinaceous surface of VPs underlying their global SH is like a fragmented puzzle. This article provides an overview of the topic from the perspective of modern protein biophysics for updating the classic physicochemical picture of outer VP/water interfaces hitherto accepted. Patterns of non-polar and "false-polar" patches, expressing variable hydrophobic degrees according to neighboring polar patches, are now drawn. The extensive discussion of reviewed data generates such fresh ideas to explore in the coming years for better modeling the SH of wild virions or engineered virus-based nanoparticles, paving the way for new directions in fundamental virology and virus-based chemistry.
Collapse
Affiliation(s)
- Guillaume Sautrey
- LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France
| |
Collapse
|
2
|
Wardeh M, Pilgrim J, Hui M, Kotsiri A, Baylis M, Blagrove MSC. Features that matter: Evolutionary signatures can predict viral transmission routes. PLoS Pathog 2024; 20:e1012629. [PMID: 39432551 PMCID: PMC11527288 DOI: 10.1371/journal.ppat.1012629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/31/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Routes of virus transmission between hosts are key to understanding viral epidemiology. Different routes have large effects on viral ecology, and likelihood and rate of transmission; for example, respiratory and vector-borne viruses together encompass the majority of rapid outbreaks and high-consequence animal and plant epidemics. However, determining the specific transmission route(s) can take months to years, delaying mitigation efforts. Here, we identify the viral features and evolutionary signatures which are predictive of viral transmission routes and use them to predict potential routes for fully-sequenced viruses in silico and rapidly, for both viruses with no observed routes, as well as viruses with missing routes. This was achieved by compiling a dataset of 24,953 virus-host associations with 81 defined transmission routes, constructing a hierarchy of virus transmission encompassing those routes and 42 higher-order modes, and engineering 446 predictive features from three complementary perspectives. We integrated those data and features to train 98 independent ensembles of LightGBM classifiers. We found that all features contributed to the prediction for at least one of the routes and/or modes of transmission, demonstrating the utility of our broad multi-perspective approach. Our framework achieved ROC-AUC = 0.991, and F1-score = 0.855 across all included transmission routes and modes, and was able to achieve high levels of predictive performance for high-consequence respiratory (ROC-AUC = 0.990, and F1-score = 0.864) and vector-borne transmission (ROC-AUC = 0.997, and F1-score = 0.921). Our framework ranks the viral features in order of their contribution to prediction, per transmission route, and hence identifies the genomic evolutionary signatures associated with each route. Together with the more matured field of viral host-range prediction, our predictive framework could: provide early insights into the potential for, and pattern of viral spread; facilitate rapid response with appropriate measures; and significantly triage the time-consuming investigations to confirm the likely routes of transmission.
Collapse
Affiliation(s)
- Maya Wardeh
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melody Hui
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Aurelia Kotsiri
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marcus S. C. Blagrove
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Bastin G, Gantzer C, Schvoerer E, Sautrey G. The presence of RNA cargo is suspected to modify the surface hydrophobicity of the MS2 phage. Virology 2023; 585:139-144. [PMID: 37343460 DOI: 10.1016/j.virol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.
Collapse
Affiliation(s)
| | | | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie - Microbiologie, Hôpital Universitaire de Nancy, F-54500, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
4
|
Heldt CL, Areo O, Joshi PU, Mi X, Ivanova Y, Berrill A. Empty and Full AAV Capsid Charge and Hydrophobicity Differences Measured with Single-Particle AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5641-5648. [PMID: 37040364 PMCID: PMC10135413 DOI: 10.1021/acs.langmuir.2c02643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Indexed: 05/07/2023]
Abstract
Adeno-associated virus (AAV) is showing promise as a therapy for diseases that contain a single-gene deletion or mutation. One major scale-up challenge is the removal of empty or non-gene of interest containing AAV capsids. Analytically, the empty capsids can be separated from full capsids using anion exchange chromatography. However, when scaled up to manufacturing, the minute changes in conductivity are difficult to consistently obtain. To better understand the differences in the empty and full AAV capsids, we have developed a single-particle atomic force microscopy (AFM) method to measure the differences in the charge and hydrophobicity of AAV capsids at the single-particle level. The atomic force microscope tip was functionalized with either a charged or a hydrophobic molecule, and the adhesion force between the functionalized atomic force microscope tip and the virus was measured. We measured a change in the charge and hydrophobicity between empty and full AAV2 and AAV8 capsids. The charge and hydrophobicity differences between AAV2 and AAV8 are related to the distribution of charge on the surface and not the total charge. We propose that the presence of nucleic acids inside the capsid causes minor but measurable changes in the capsid structure that lead to measurable surface changes in charge and hydrophobicity.
Collapse
Affiliation(s)
- Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Oluwatoyin Areo
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Pratik U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Xue Mi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Yulia Ivanova
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| | - Alex Berrill
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| |
Collapse
|
5
|
Single-Particle Characterization of SARS-CoV-2 Isoelectric Point and Comparison to Variants of Interest. Microorganisms 2021; 9:microorganisms9081606. [PMID: 34442686 PMCID: PMC8401476 DOI: 10.3390/microorganisms9081606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2, the cause of COVID-19, is a new, highly pathogenic coronavirus, which is the third coronavirus to emerge in the past 2 decades and the first to become a global pandemic. The virus has demonstrated itself to be extremely transmissible and deadly. Recent data suggest that a targeted approach is key to mitigating infectivity. Due to the proliferation of cataloged protein and nucleic acid sequences in databases, the function of the nucleic acid, and genetic encoded proteins, we make predictions by simply aligning sequences and exploring their homology. Thus, similar amino acid sequences in a protein usually confer similar biochemical function, even from distal or unrelated organisms. To understand viral transmission and adhesion, it is key to elucidate the structural, surface, and functional properties of each viral protein. This is typically first modeled in highly pathogenic species by exploring folding, hydrophobicity, and isoelectric point (IEP). Recent evidence from viral RNA sequence modeling and protein crystals have been inadequate, which prevent full understanding of the IEP and other viral properties of SARS-CoV-2. We have thus experimentally determined the IEP of SARS-CoV-2. Our findings suggest that for enveloped viruses, such as SARS-CoV-2, estimates of IEP by the amino acid sequence alone may be unreliable. We compared the experimental IEP of SARS-CoV-2 to variants of interest (VOIs) using their amino acid sequence, thus providing a qualitative comparison of the IEP of VOIs.
Collapse
|
6
|
Akhmetova AI, Yaminsky IV. High resolution imaging of viruses: Scanning probe microscopy and related techniques. Methods 2021; 197:30-38. [PMID: 34157416 DOI: 10.1016/j.ymeth.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Scanning probe microscopy is a group of measurements that provides 3D visualization of viruses in different environmental conditions including liquids and air. Besides 3D topography it is possible to measure the properties like mechanical rigidity and stability, adhesion, tendency to crystallization, surface charge, etc. Choosing the right substrate and scanning parameters makes it much easier to obtain reliable data. Rational interpretation of experimental results should take into account possible artifacts, proper filtering and data presentation using specially designed software packages. Animal and human virus characterization is in the focus of many intensive studies because of their potential harm to higher organisms. The article focuses on high-resolution visualization of plant viruses. Tobacco mosaic virus, potato viruses X and B and others are not dangerous for the human being and are widely used in different applications such as vaccine preparation, construction of building units in nanotechnology and material science applications, nanoparticle production and delivery, and even metrology. The methods of virus's deposition, visualization, and consequent image processing and interpretation are described in details. Specific examples of viruses imaging are illustrated using the FemtoScan Online software, which has typical and all the necessary built-in functions for constructing three-dimensional images, their processing and analysis. Despite visible progress in visualizing the viruses using probe microscopy, many unresolved problems still remain. At present time the probe microscopy data on viruses is not systemized. There is no descriptive atlas of the images and morphology as revealed by this type of high resolution microscopy. It is worth emphasizing that new virus investigation methods will appear due to the progress of science.
Collapse
Affiliation(s)
- Assel I Akhmetova
- Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, GSP-1, Russia; Advanced Technologies Center, 4-5-47, Stroitelei str., Moscow, 119311, Russia
| | - Igor V Yaminsky
- Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, GSP-1, Russia; Advanced Technologies Center, 4-5-47, Stroitelei str., Moscow, 119311, Russia.
| |
Collapse
|