1
|
Li XR, Qi L, Zhang XW, Wei C, Yu B, Pei TL. Quercetin and Nano-Derivatives: Potential and Challenges in Cancer Therapy. Int J Nanomedicine 2025; 20:6701-6720. [PMID: 40444010 PMCID: PMC12120254 DOI: 10.2147/ijn.s509877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Quercetin, a prevalent flavonol compound, has gained attention for its multifaceted mechanisms of action against various cancers, highlighting its potential as an adjunctive therapy in cancer treatments. This review aims to systematically evaluate the structural optimization, mechanisms of action, and clinical applications of quercetin and its nano-derivatives in cancer treatment. Employing a bibliometric analysis of 6231 articles from the Web of Science Core Collection, we observed a notable increase in annual publications, particularly from the USA and China, indicating a growing interest in quercetin's therapeutic potential. Our findings reveal that quercetin enhances the efficacy of conventional therapies by modulating critical signaling pathways, thereby increasing cancer cell sensitivity while simultaneously protecting normal tissues from therapy-induced damage. Structural modifications, including glycosylation, methylation, sulfation, and glucuronidation, alongside nanoparticle formulation, significantly improve the stability, solubility, and bioavailability of quercetin, enabling targeted drug delivery. Despite the promising preclinical outcomes, the clinical translation of quercetin remains nascent, necessitating further rigorous research to validate its safety and efficacy in human subjects. In conclusion, while quercetin exhibits substantial anticancer properties and therapeutic potential, future studies should focus on expanding sample sizes, elucidating metabolic pathways, and conducting comprehensive clinical trials to inform its application in oncology.
Collapse
Affiliation(s)
- Xin-Ru Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Lin Qi
- Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Xi-Wen Zhang
- College of The Second Clinical Medical, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450003, People’s Republic of China
| | - Chao Wei
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, 272000, People’s Republic of China
| | - Tian-Li Pei
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550000, People’s Republic of China
| |
Collapse
|
2
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
3
|
Carrillo-Martinez EJ, Flores-Hernández FY, Salazar-Montes AM, Nario-Chaidez HF, Hernández-Ortega LD. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024; 29:1000. [PMID: 38474512 DOI: 10.3390/molecules29051000] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Quercetin is a flavonoid with a low molecular weight that belongs to the human diet's phenolic phytochemicals and nonenergy constituents. Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC), which act as reducing agents by chelating transition-metal ions. Its structure has five functional hydroxyl groups, which work as electron donors and are responsible for capturing free radicals. In addition to its antioxidant capacity, different pharmacological properties of quercetin have been described, such as carcinostatic properties; antiviral, antihypertensive, and anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis; these are developed in this review.
Collapse
Affiliation(s)
- Eber Josue Carrillo-Martinez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Flor Yohana Flores-Hernández
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | | | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinaria en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
4
|
Gopinath P, Oviya RP, Gopisetty G. Oestrogen receptor-independent actions of oestrogen in cancer. Mol Biol Rep 2023; 50:9497-9509. [PMID: 37731028 DOI: 10.1007/s11033-023-08793-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is via binding to its receptor [oestrogen receptor (ERα or β)], followed by nuclear translocation and transcriptional regulation of target genes. Almost 70% of breast tumours are ER + , and endocrine therapies with selective ER modulators (tamoxifen) have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India
| | - Revathi Paramasivam Oviya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India.
| |
Collapse
|
5
|
Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, Shams MH, Baghbadorani PZ, Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front Immunol 2023; 14:1077531. [PMID: 36926328 PMCID: PMC10011078 DOI: 10.3389/fimmu.2023.1077531] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer is caused by abnormal proliferation of cells and aberrant recognition of the immune system. According to recent studies, natural products are most likely to be effective at preventing cancer without causing any noticeable complications. Among the bioactive flavonoids found in fruits and vegetables, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties. This review aims to highlight the potential therapeutic effects of quercetin on some different types of cancers including blood, lung and prostate cancers.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Golabi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Montazeri
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Shams
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Nahid Eskandari
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|