1
|
Dunn M, Dymock L, Hoskins C. Solid lipid nanoparticles in pancreatic cancer treatment. BJC REPORTS 2025; 3:21. [PMID: 40217114 PMCID: PMC11992092 DOI: 10.1038/s44276-025-00130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic cancer comes with one of the poorest prognoses of all cancers and as such it is crucial that new therapies are developed to improve on the current statistics. Currently, chemotherapy is the cornerstone of pancreatic cancer treatment with several drugs, and combinations of drugs being utilised for their anti-cancer effect. However, pancreatic cancer has a dense stroma around the tumour and intratumoral bacteria which result in drugs having difficulty penetrating the tumour or being metabolised by bacteria rendering them inactive. The utilisation of nanotechnology in chemotherapy for pancreatic cancer has been a huge area of focus for researchers worldwide with most of the focus being on lipid-based, inorganic and polymer-based nanoparticles. Solid lipid nanoparticles which have been studied since being first published in the 1990s, have been poorly researched for pancreatic cancer applications. Being composed of physiological lipids, solid lipid nanoparticles offer a greatly reduced risk of acute or chronic toxicities arising compared to inorganic or polymeric nanoparticles. They also possess the ability to improve on circulation time, permeability, and bioavailability of many first-line chemotherapeutics.
Collapse
Affiliation(s)
- Mia Dunn
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Lewis Dymock
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
2
|
Fuertes-Recuero M, Vázquez-Fernández E, Lizasoain-Sánz G, Arroba-Alonso A, Sánchez-López A, Martínez-de-Merlo E, Suárez-Redondo M, Ortiz-Diez G. Pancreatic adenocarcinoma treated with surgical resection, toceranib phosphate and firocoxib in a dog: a case report. Vet Res Commun 2024; 48:1921-1927. [PMID: 38453822 PMCID: PMC11147921 DOI: 10.1007/s11259-024-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Exocrine pancreatic carcinomas are rarely reported in dogs. A ductal pancreatic adenocarcinoma in a 10-year-old intact beagle is described in this report. The diagnosis was made based on clinical signs, imaging (abdominal ultrasound and CT scan) and histopathology. Treatment consisted of partial right lobe pancreatectomy followed by adjuvant therapy with toceranib phosphate (Palladia®) and firocoxib (Previcox®) for six months. The treatment was well tolerated, and the survival time was 445 days. To our knowledge, this is the longest survival reported in the literature for a dog diagnosed with exocrine pancreatic adenocarcinoma. The results described here may contribute to provide a better understanding about this neoplasia and potential treatment options.
Collapse
Affiliation(s)
- Manuel Fuertes-Recuero
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain.
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain.
| | | | - Guillermo Lizasoain-Sánz
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Amanda Arroba-Alonso
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Alejandro Sánchez-López
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Elena Martínez-de-Merlo
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - María Suárez-Redondo
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Gustavo Ortiz-Diez
- Veterinary Teaching Hospital, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| |
Collapse
|
3
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
4
|
An In Vitro Investigation into Cryoablation and Adjunctive Cryoablation/Chemotherapy Combination Therapy for the Treatment of Pancreatic Cancer Using the PANC-1 Cell Line. Biomedicines 2022; 10:biomedicines10020450. [PMID: 35203660 PMCID: PMC8962332 DOI: 10.3390/biomedicines10020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of pancreatic ductal adenocarcinoma (PDAC) continues to grow, so does the need for new strategies for treatment. One such area being evaluated is cryoablation. While promising, studies remain limited and questions surrounding basic dosing (minimal lethal temperature) coupled with technological issues associated with accessing PDAC tumors and tumor proximity to vasculature and bile ducts, among others, have limited the use of cryoablation. Additionally, as chemotherapy remains the first-line of attack for PDAC, there is limited information on the impact of combining freezing with chemotherapy. As such, this study investigated the in vitro response of a PDAC cell line to freezing, chemotherapy, and the combination of chemotherapy pre-treatment and freezing. PANC-1 cells and PANC-1 tumor models were exposed to cryoablation (freezing insult) and compared to non-frozen controls. Additionally, PANC-1 cells were exposed to varying sub-clinical doses of gemcitabine or oxaliplatin alone and in combination with freezing. The results show that freezing to −10 °C did not affect viability, whereas −15 °C and −20 °C resulted in a reduction in 1 day post-freeze viability to 85% and 20%, respectively, though both recovered to controls by day 7. A complete cell loss was found following a single freeze below −25 °C. The combination of 100 nM gemcitabine (1.1 mg/m2) pre-treatment and a single freeze at −15 °C resulted in near-complete cell death (<5% survival) over the 7-day assessment interval. The combination of 8.8 µM oxaliplatin (130 mg/m2) pre-treatment and a single −15 °C freeze resulted in a similar trend of increased PANC-1 cell death. In summary, these in vitro results suggest that freezing alone to temperatures in the range of −25 °C results in a high degree of PDAC destruction. Further, the data support a potential combinatorial chemo/cryo-therapeutic strategy for the treatment of PDAC. These results suggest that a reduction in chemotherapeutic dose may be possible when offered in combination with freezing for the treatment of PDAC.
Collapse
|
5
|
Roacho-Pérez JA, Garza-Treviño EN, Delgado-Gonzalez P, G-Buentello Z, Delgado-Gallegos JL, Chapa-Gonzalez C, Sánchez-Domínguez M, Sánchez-Domínguez CN, Islas JF. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life (Basel) 2021; 11:1187. [PMID: 34833063 PMCID: PMC8620707 DOI: 10.3390/life11111187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the most common lethal tumor in America. This lethality is related to limited treatment options. Conventional treatments involve the non-specific use of chemotherapeutical agents such as 5-FU, capecitabine, gemcitabine, paclitaxel, cisplatin, oxaliplatin, or irinotecan, which produce several side effects. This review focuses on the use of targeted nanoparticles, such as metallic nanoparticles, polymeric nanoparticles, liposomes, micelles, and carbon nanotubes as an alternative to standard treatment for pancreatic cancer. The principal objective of nanoparticles is reduction of the side effects that conventional treatments produce, mostly because of their non-specificity. Several molecular markers of pancreatic cancer cells have been studied to target nanoparticles and improve current treatment. Therefore, properly functionalized nanoparticles with specific aptamers or antibodies can be used to recognize pancreatic cancer cells. Once cancer is recognized, these nanoparticles can attack the tumor by drug delivery, gene therapy, or hyperthermia.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Zuca G-Buentello
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Christian Chapa-Gonzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico;
| | - Margarita Sánchez-Domínguez
- Grupo de Química Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico;
| | - Celia N. Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| |
Collapse
|
6
|
Musser ML, Johannes CM. Toceranib phosphate (Palladia) for the treatment of canine exocrine pancreatic adenocarcinoma. BMC Vet Res 2021; 17:269. [PMID: 34380474 PMCID: PMC8356392 DOI: 10.1186/s12917-021-02978-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background Canine pancreatic carcinoma is a rare, aggressive tumour that is often diagnosed late in the course of disease. Effective treatment strategies have been elusive, and overall survival time is short. In humans, treatment with tyrosine kinase inhibitors alone, or in combination with IV gemcitabine, have been moderately effective. As canine and human pancreatic carcinomas share many clinical aspects, strategies that mimic human treatment regimens may confer a better outcome in canine patients. The aim of this study was to assess the role of the veterinary tyrosine kinase inhibitor, toceranib phosphate, in the treatment of cytologically or histologically confirmed canine pancreatic carcinomas. Results Retrospectively, medical records of dogs with confirmed pancreatic carcinoma treated with toceranib were reviewed. Eight dogs were identified that fit the inclusion criteria. Toceranib was well-tolerated by all patients. Six were treated in the gross disease setting. Four had image-based evaluation of clinical benefit (complete response, partial response, or stable disease of > 10 weeks). Of those patients, 1 achieved a partial response, 2 stable disease, and 1 had progressive disease, for an overall clinical benefit rate of 75 %. An additional dog had clinically stable disease that was not confirmed via imaging. The toceranib-specific median overall survival time was 89.5 days (range: 14–506 days). Conclusions Although limited in patient number, this small study suggests that toceranib may have biologic activity in dogs with pancreatic carcinoma. Larger, prospective studies are needed to confirm these preliminary results and define the use of toceranib in the microscopic disease setting.
Collapse
Affiliation(s)
- Margaret L Musser
- College of Veterinary Medicine, Iowa State University, 1809 S. Riverside Dr, Ames, Ames, IA, 50011, USA.
| | - Chad M Johannes
- College of Veterinary Medicine, Iowa State University, 1809 S. Riverside Dr, Ames, Ames, IA, 50011, USA
| |
Collapse
|
7
|
Synthesis and Biological Screening of New 4-Hydroxycoumarin Derivatives and Their Palladium(II) Complexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8849568. [PMID: 34007407 PMCID: PMC8102111 DOI: 10.1155/2021/8849568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Two newly synthesized 4-hydroxycoumarin bidentate ligands (L1 and L2) and their palladium(II) complexes (C1 and C2) were screened for their biological activities, in vitro and in vivo. Structures of new compounds were established based on elemental analysis, 1H NMR, 13C NMR, and IR spectroscopic techniques. The obtained compounds were tested for their antioxidative and cytotoxic activities and results pointed to selective antiradical activity of palladium(II) complexes towards •OH and -•OOH radicals and anti-ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical) activity comparable to that of ascorbate. Results indicated the effect of C1 and C2 on the enzymatic activity of the antioxidative defense system. In vitro cytotoxicity assay performed on different carcinoma cell lines (HCT166, A375, and MIA PaCa-2), and one healthy fibroblast cell line (MRC-5) showed a cytotoxic effect of both C1 and C2, expressed as a decrease in carcinoma cells' viability, mostly by induction of apoptosis. In vivo toxicity tests performed on zebrafish embryos indicated different effects of C1 and C2, ranging from adverse developmental effect to no toxicity, depending on tested concentration. According to docking studies, both complexes (C1 and C2) showed better inhibitory activity in comparison to other palladium(II) complexes.
Collapse
|
8
|
Meta-Analysis of Gastrointestinal Adverse Events from Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13071643. [PMID: 33915952 PMCID: PMC8037766 DOI: 10.3390/cancers13071643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients treated with tyrosine kinase inhibitors (TKIs) often suffer from adverse events that negatively impact quality of life and patient therapy compliance. The purpose of this meta-analysis was to assess and compare the incidence of gastrointestinal adverse events (GI AEs), particularly in second-generation TKIs, in a very large, heterogeneous CML population. Results illustrate significant differences in GI AE profiles between different TKIs but minimal differences in patient survival. TKI AE profile should be a primary consideration when choosing an optimal, personalized TKI therapy for chronic phase CML patients without resistant mutations. Abstract Tyrosine kinase inhibitors (TKIs) are the frontline therapy for BCR-ABL (Ph+) chronic myeloid leukemia (CML). A systematic meta-analysis of 43 peer-reviewed studies with 10,769 CML patients compared the incidence of gastrointestinal adverse events (GI AEs) in a large heterogeneous CML population as a function of TKI type. Incidence and severity of nausea, vomiting, and diarrhea were assessed for imatinib, dasatinib, bosutinib, and nilotinib. Examination of combined TKI average GI AE incidence found diarrhea most prevalent (22.5%), followed by nausea (20.6%), and vomiting (12.9%). Other TKI GI AEs included constipation (9.2%), abdominal pain (7.6%), gastrointestinal hemorrhage (3.5%), and pancreatitis (2.2%). Mean GI AE incidence was significantly different between TKIs (p < 0.001): bosutinib (52.9%), imatinib (24.2%), dasatinib (20.4%), and nilotinib (9.1%). Diarrhea was the most prevalent GI AE with bosutinib (79.2%) and dasatinib (28.1%), whereas nausea was most prevalent with imatinib (33.0%) and nilotinib (13.2%). Incidence of grade 3 or 4 severe GI AEs was ≤3% except severe diarrhea with bosutinib (9.5%). Unsupervised clustering revealed treatment efficacy measured by the complete cytogenetic response, major molecular response, and overall survival is driven most by disease severity, not TKI type. For patients with chronic phase CML without resistance, optimal TKI selection should consider TKI AE profile, comorbidities, and lifestyle.
Collapse
|
9
|
Sun J, Russell CC, Scarlett CJ, McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med Chem 2020; 11:164-183. [PMID: 33479626 PMCID: PMC7433757 DOI: 10.1039/c9md00447e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC), with a 5 year survival of <7%, is one of the most fatal of all human cancers. The highly aggressive and metastatic character of this disease poses a challenge that current therapies are failing, despite significant efforts, to meet. This review examines the current status of the 35 small molecule inhibitors targeting pancreatic cancer in clinical trials and the >50 currently under investigation. These compounds inhibit biological targets spanning protein kinases, STAT3, BET, HDACs and Bcl-2 family proteins. Unsurprisingly, protein kinase inhibitors are overrepresented. Some trials show promise; a phase I combination trial of vorinostat 11 and capecitabine 17 gave a median overall survival (MoS) of 13 months and a phase II study of pazopanib 15 showed a MoS of 25 months. The current standard of care for metastatic pancreatic ductal adenocarcinoma, fluorouracil/folic acid (5-FU, Adrucil®), and gemcitabine (GEMZAR®) afforded a MoS of 23 and 23.6 months (EPAC-3 study), respectively. In patients who can tolerate the FOLFIRINOX regime, this is becoming the standard of treatment with a MoS of 11.1 months. Clinical study progress has been slow with limited improvement in patient survival relative to gemcitabine 1 monotherapy. A major cause of low PC survival is the late stage of diagnosis, occurring in patients who consider typical early stage warning signs of aches and pains normal. The selection of patients with specific disease phenotypes, the use of improved efficient drug combinations, the identification of biomarkers to specific cancer subtypes and more effective designs of investigation have improved outcomes. To move beyond the current dire condition and paucity of PC treatment options, determination of the best regimes and new treatment options is a challenge that must be met. The reasons for poor PC prognosis have remained largely unchanged for 20 years. This is arguably a consequence of significant changes in the drug discovery landscape, and the increasing pressure on academia to deliver short term 'media' friendly short-term news 'bites'. PC research sits at a pivotal point. Perhaps the greatest challenge is enacting a culture change that recognises that major breakthroughs are a result of blue sky, truly innovative and curiosity driven research.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
- Medicinal Chemistry , School of Pharmacy , Binzhou Medical University , Yantai , 264003 , China
| | - Cecilia C Russell
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| | - Christopher J Scarlett
- Applied Sciences , School of Environmental & Life Sciences , The University of Newcastle , Ourimbah NSW 2258 , Australia
| | - Adam McCluskey
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| |
Collapse
|
10
|
Bonello M, Sims AH, Langdon SP. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol Med 2018; 15:375-388. [PMID: 30766749 PMCID: PMC6372909 DOI: 10.20892/j.issn.2095-3941.2018.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Collapse
Affiliation(s)
- Maria Bonello
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Harvey Sims
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Peter Langdon
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
11
|
Kovalchuk A, Kolb B. Chemo brain: From discerning mechanisms to lifting the brain fog-An aging connection. Cell Cycle 2017; 16:1345-1349. [PMID: 28657421 DOI: 10.1080/15384101.2017.1334022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mounting evidence indicates that cancer treatments cause numerous deleterious effects, including central nervous system (CNS) toxicity. Chemotherapy-caused CNS side effects encompass changes in cognitive function, memory, and attention, to name a few. Although chemotherapy treatment-induced side effects occur in 16-75% of all patients, the mechanisms of these effects are not well understood. We have recently proposed a new epigenetic theory of chemo brain and, in a pioneer study, determined that cytotoxic chemotherapy agents induce oxidative DNA damage and affect molecular and epigenetic processes in the brain, and may be associated with brain aging processes. In this paper, we discuss the implications of chemo brain epigenetic effects and future perspectives, as well as outline potential links with brain aging and future translational research opportunities.
Collapse
Affiliation(s)
- Anna Kovalchuk
- a Department of Neuroscience , University of Lethbridge, Lethbridge, AB Canadian Institute for Advanced Research , Toronto , ON Alberta Epigenetics Network, AB
| | - Bryan Kolb
- a Department of Neuroscience , University of Lethbridge, Lethbridge, AB Canadian Institute for Advanced Research , Toronto , ON Alberta Epigenetics Network, AB
| |
Collapse
|
12
|
McDonell LM, Kernohan KD, Boycott KM, Sawyer SL. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin. Hum Mol Genet 2015; 24:R60-6. [PMID: 26152202 DOI: 10.1093/hmg/ddv254] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 01/10/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis.
Collapse
Affiliation(s)
- Laura M McDonell
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kristin D Kernohan
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Albesiano E, Davis M, See AP, Han JE, Lim M, Pardoll DM, Kim Y. Immunologic consequences of signal transducers and activators of transcription 3 activation in human squamous cell carcinoma. Cancer Res 2010; 70:6467-76. [PMID: 20682796 DOI: 10.1158/0008-5472.can-09-4058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Paracrine cross-talk between tumor cells and immune cells within the tumor microenvironment underlies local mechanisms of immune evasion. Signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in diverse cancer types, is a key regulator of cytokine and chemokine expression in murine tumors, resulting in suppression of both innate and adaptive antitumor immunity. However, the immunologic effects of STAT3 activation in human cancers have not been studied in detail. To investigate how STAT3 activity in human head and neck squamous cell carcinoma (HNSCC) might alter the tumor microenvironment to enable immune escape, we used small interfering RNA and small-molecule inhibitors to suppress STAT3 activity. STAT3 inhibition in multiple primary and established human squamous carcinoma lines resulted in enhanced expression and secretion of both proinflammatory cytokines and chemokines. Although conditioned medium containing supernatants from human HNSCC inhibited lipopolysaccharide-induced dendritic cell activation in vitro, supernatants from STAT3-silenced tumor cells reversed this immune evasion mechanism. Moreover, supernatants from STAT3-silenced tumor cells were able to stimulate the migratory behavior of lymphocytes from human peripheral blood in vitro. These results show the importance of STAT3 activation in regulating the immunomodulatory mediators by human tumors and further validate STAT3 as a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Emilia Albesiano
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
A novel, broad-spectrum anticancer compound containing the imidazo[4,5-e][1,3]diazepine ring system. Bioorg Med Chem Lett 2010; 20:4386-9. [PMID: 20594843 DOI: 10.1016/j.bmcl.2010.06.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 01/11/2023]
Abstract
Synthesis and broad-spectrum anticancer activity of a novel heterocyclic compound 1 containing the title imidazo[4,5-e][1,3]diazepine ring system have been reported. The compound shows potent in vitro antitumor activity with low micromolar IC(50)'s against prostate, lung, breast, and ovarian cancer cell lines tested. The long alkyl chain attached to the six-position of the heterocyclic ring of 1 appears to be necessary for the observed biological activity.
Collapse
|