1
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
2
|
Abstract
The ubiquity of vitamin D metabolising enzymes and vitamin D receptors in mammalian organisms suggests that vitamin D has pleiotropic effects. There are quite a few studies indicating the anticancer, cardioprotective and antidiabetic effects of vitamin D; however, the best-documented actions of vitamin D are the regulation of Ca-phosphate balance and its effect on immune function.Vitamin D levels in organisms are modulated by many environmental and non-environmental factors. One potential factor that may influence vitamin D levels and effects is the sex of the individuals studied. This review focuses on the scientific evidence indicating different synthesis and metabolism of vitamin D in females and males, mainly from PubMed database sources. The article verifies the sex differences in vitamin D levels reported around the world. Moreover, the different effects of vitamin D on the musculoskeletal, cardiovascular, nervous and immune systems, as well as cancer in males and females, were discussed.Most studies addressing sex differences in vitamin D levels and effects are observational studies with conflicting results. Therefore, carefully designed clinical trials and experiments on animal models should be carried out to determine the role of non-environmental factors that may differentiate vitamin D levels in females and males.
Collapse
|
3
|
Patankar M, Li M, Khalatbari A, Castle JD, Hu L, Zhang C, Shaker A. Inflammatory and Proliferative Pathway Activation in Human Esophageal Myofibroblasts Treated with Acidic Bile Salts. Int J Mol Sci 2022; 23:ijms231810371. [PMID: 36142285 PMCID: PMC9498994 DOI: 10.3390/ijms231810371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Subepithelial human esophageal myofibroblasts (HEMFs) in gastroesophageal reflux disease (GERD) are exposed to luminal contents via impaired squamous epithelium barrier integrity. The supernatant of HEMFs treated with acidic bile salts reflective of in vivo reflux increases squamous epithelial thickness. We aimed to identify the involved mechanisms using an unbiased approach. Acidic-bile-salt-treated primary HEMF cultures (n = 4) were submitted for RNA-Seq and analyzed with Partek Flow followed by Ingenuity Pathway Analysis (IPA). A total of 1165 molecules (579 downregulated, 586 upregulated) were differentially expressed, with most top regulated molecules either extracellular or in the plasma membrane. Increases in HEMF CXCL-8, IL-6, AREG, and EREG mRNA, and protein secretion were confirmed. Top identified canonical pathways were agranulocyte and granulocyte adhesion and diapedesis, PI3K/AKT signaling, CCR5 signaling in macrophages, and the STAT3 pathway. Top diseases and biological functions were cellular growth and development, hematopoiesis, immune cell trafficking, and cell-mediated response. The targets of the top upstream regulator ErbB2 included CXCL-8, IL-6, and AREG and the inhibition of CXCL-8 in the HEMF supernatant decreased squamous epithelial proliferation. Our work shows an inflammatory/immune cell and proliferative pathways activation in HEMFs in the GERD environment and identifies CXCL-8 as a HEMF-derived chemokine with paracrine proliferative effects on squamous epithelium.
Collapse
Affiliation(s)
- Madhura Patankar
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA 90007, USA
| | - Atousa Khalatbari
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Joshua D. Castle
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Liping Hu
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Chunying Zhang
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Anisa Shaker
- Department of Internal Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Correspondence: ; Tel.: +1-323-442-2084
| |
Collapse
|
4
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
5
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020; 12:3709. [PMID: 33266235 PMCID: PMC7760347 DOI: 10.3390/nu12123709] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver from cholesterol. BA undergo continuous enterohepatic recycling through intestinal biotransformation by gut microbiome and reabsorption into the portal tract for uptake by hepatocytes. BA are detergent molecules aiding the digestion and absorption of dietary fat and fat-soluble vitamins, but also act as important signaling molecules via the nuclear receptor, farnesoid X receptor (FXR), and the membrane-associated G protein-coupled bile acid receptor 1 (GPBAR-1) in the distal intestine, liver and extra hepatic tissues. The hydrophilic-hydrophobic balance of the BA pool is finely regulated to prevent BA overload and liver injury. By contrast, hydrophilic BA can be hepatoprotective. The ultimate effects of BA-mediated activation of GPBAR-1 is poorly understood, but this receptor may play a role in protecting the remnant liver and in maintaining biliary homeostasis. In addition, GPBAR-1 acts on pathways involved in inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity, and sinusoidal blood flow. Recent evidence suggests that environmental factors influence GPBAR-1 gene expression. Thus, targeting GPBAR-1 might improve liver protection, facilitating beneficial metabolic effects through primary prevention measures. Here, we discuss the complex pathways linked to BA effects, signaling properties of the GPBAR-1, mechanisms of liver damage, gene-environment interactions, and therapeutic aspects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
7
|
Zhou H, Zhou SY, Gillilland M, Li JY, Lee A, Gao J, Zhang G, Xu X, Owyang C. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight 2020; 5:138881. [PMID: 33055426 PMCID: PMC7605541 DOI: 10.1172/jci.insight.138881] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
High-fat feeding (HFF) leads to gut dysbiosis through unclear mechanisms. We hypothesize that bile acids secreted in response to high-fat diets (HFDs) may act on intestinal Paneth cells, leading to gut dysbiosis. We found that HFF resulted in widespread taxonomic shifts in the bacteria of the ileal mucosa, characterized by depletion of Lactobacillus and enrichment of Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae, which were prevented by the bile acid binder cholestyramine. Immunohistochemistry and in situ hybridization studies showed that G protein-coupled bile acid receptor (TGR5) expressed in Paneth cells was upregulated in the rats fed HFD or normal chow supplemented with cholic acid. This was accompanied by decreased lysozyme+ Paneth cells and α-defensin 5 and 6 and increased expression of XBP-1. Pretreatment with ER stress inhibitor 4PBA or with cholestyramine prevented these changes. Ileal explants incubated with deoxycholic acid or cholic acid caused a decrease in α-defensin 5 and 6 and an increase in XBP-1, which was prevented by TGR5 antibody or 4PBA. In conclusion, this is the first demonstration to our knowledge that TGR5 is expressed in Paneth cells. HFF resulted in increased bile acid secretion and upregulation of TGR5 expression in Paneth cells. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by HFF.
Collapse
Affiliation(s)
- Hui Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Merritt Gillilland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | - Allen Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jun Gao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Guanpo Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Gastroenterology, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile Acid Receptors and Gastrointestinal Functions. LIVER RESEARCH 2019; 3:31-39. [PMID: 32368358 PMCID: PMC7197881 DOI: 10.1016/j.livres.2019.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Our understanding of the mechanisms underlying these effects of bile acids on gut functions has been greatly enhanced by the discovery of bile acid receptors, including the nuclear receptors: farnesoid X receptor (FXR), vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR); and the G protein-coupled receptors: Takeda G protein-coupled receptor (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic acetylcholine receptor M3 (M3R).. For example, various studies provided evidence demonstrating the anti-inflammatory effects FXR and TGR5 activation in models of intestinal inflammation. In addition, TGR5 activation in enteric neurons was recently shown to increase colonic motility, which may lead to bile acid-induced diarrhea. Interestingly, TGR5 induces the secretion of glucagon-like peptide-1 (GLP-1) from L-cells to enhance insulin secretion and modulate glucose metabolism. Because of the importance of these receptors, agonists of TGR5 and intestine-specific FXR agonists are currently being tested as an option for the treatment of diabetes mellitus and primary bile acid diarrhea, respectively. This review summarizes current knowledge of the functional roles of bile acid receptors in the gastrointestinal tract.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL,To whom correspondence should be addressed: Waddah A. Alrefai, MD: Research Career Scientist, Jesse Brown VA Medical Center, Professor of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; ; Tel. (312) 569-7429; Fax. (312) 569-8114
| |
Collapse
|
9
|
Berdeaux R, Hutchins C. Anabolic and Pro-metabolic Functions of CREB-CRTC in Skeletal Muscle: Advantages and Obstacles for Type 2 Diabetes and Cancer Cachexia. Front Endocrinol (Lausanne) 2019; 10:535. [PMID: 31428057 PMCID: PMC6688074 DOI: 10.3389/fendo.2019.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
cAMP is one of the earliest described mediators of hormone action in response to physiologic stress that allows acute stress responses and adaptation in every tissue. The classic role of cAMP signaling in metabolic tissues is to regulate nutrient partitioning. In response to acute stress, such as epinephrine released during strenuous exercise or fasting, intramuscular cAMP liberates glucose from glycogen and fatty acids from triglycerides. In the long-term, activation of Gs-coupled GPCRs stimulates muscle growth (hypertrophy) and metabolic adaptation through multiple pathways that culminate in a net increase of protein synthesis, mitochondrial biogenesis, and improved metabolic efficiency. This review focuses on regulation, function, and transcriptional targets of CREB (cAMP response element binding protein) and CRTCs (CREB regulated transcriptional coactivators) in skeletal muscle and the potential for targeting this pathway to sustain muscle mass and metabolic function in type 2 diabetes and cancer. Although the muscle-autonomous roles of these proteins might render them excellent targets for both conditions, pharmacologic targeting must be approached with caution. Gain of CREB-CRTC function is associated with excess liver glucose output in type 2 diabetes, and growing evidence implicates CREB-CRTC activation in proliferation and invasion of different types of cancer cells. We conclude that deeper investigation to identify skeletal muscle specific regulatory mechanisms that govern CREB-CRTC transcriptional activity is needed to safely take advantage of their potent effects to invigorate skeletal muscle to potentially improve health in people with type 2 diabetes and cancer.
Collapse
Affiliation(s)
- Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, United States
- Graduate Program in Biochemistry and Cell Biology, The MD Anderson-UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- *Correspondence: Rebecca Berdeaux
| | - Chase Hutchins
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center Houston, Houston, TX, United States
| |
Collapse
|
10
|
Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol 2018; 161:1-13. [PMID: 30582898 DOI: 10.1016/j.bcp.2018.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.
Collapse
Affiliation(s)
- Joanne M Donkers
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
12
|
Zhao RY, He SJ, Ma JJ, Hu H, Gong YP, Wang YL, Hu BJ, Xie JZ, Tu WZ, Huang Q, Cheng J. High expression of TGR5 predicts a poor prognosis in patients with pancreatic cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3567-3574. [PMID: 31949735 PMCID: PMC6962870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 06/10/2023]
Abstract
Previous studies have showed that bile acids (BAs) play essential roles in the progression of various human cancers, and the G-protein coupled bile acid receptor-1 (Gpbar-1, or TGR5), a receptor of BAs, has been reported to connect BAs with cancers. However, little is known about the prognostic role of TGR5 in pancreatic cancer. In this study, we found that the expression of TGR5 was significantly higher in the cancerous tissues than the adjacent normal tissues by immunohistochemical staining (81.6% vs. 36.8%). Meanwhile, TGR5 was positively correlated with lymph node metastasis (P=0.021) and advanced stage (P=0.011). Finally, univariate analysis showed that patients with high TGR5 expression (P<0.001), lymph node metastasis (P=0.002) and advanced tumor stage (P=0.008) had decreased overall survival, and Cox proportional hazards regression analysis confirmed that TGR5 expression was an independent predictor of the overall survival of patients with pancreatic cancer (P=0.019). Our findings suggested that TGR5 might serve as an important predictor of poor survival in pancreatic cancer.
Collapse
Affiliation(s)
- Ru-Yi Zhao
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Si-Jia He
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jing-Jing Ma
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Soochow UniversitySuzhou, China
| | - Hai Hu
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yan-Ping Gong
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yu-Lan Wang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bin-Jie Hu
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jian-Zhu Xie
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wen-Zhi Tu
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Qian Huang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jin Cheng
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
13
|
Lee KTW, Gopalan V, Lam AK. Somatic DNA Copy-Number Alterations Detection for Esophageal Adenocarcinoma Using Digital Polymerase Chain Reaction. Methods Mol Biol 2018; 1756:195-212. [PMID: 29600372 DOI: 10.1007/978-1-4939-7734-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Somatic copy-number alterations are commonly found in cancer and play key roles in activating oncogenes and deactivating tumor suppressor genes. Digital polymerase chain reaction is an effective way to detect the changes in copy number. In esophageal adenocarcinoma, detection of somatic copy-number alterations could predict the prognosis of patients as well as the response to therapy. This chapter will review the methods involved in digital polymerase chain reaction for the research or potential clinical applications in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Katherine T W Lee
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia.
| |
Collapse
|
14
|
Abu-Farsakh S, Wu T, Lalonde A, Sun J, Zhou Z. High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5. BMC Gastroenterol 2017; 17:33. [PMID: 28212604 PMCID: PMC5316202 DOI: 10.1186/s12876-017-0590-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Claudins are a family of integral membrane proteins and are components of tight junctions (TJs). Many TJ proteins are known to tighten the cell structure and maintain a barrier. Claudin-2 forms gated paracellular channels and allows sodium ions and other small positively charged ions to cross between adjacent cells. Recently, we found that vitamin D receptor (VDR) enhanced Claudin-2 expression in colon and that bile salt receptors VDR and Takeda G-protein coupled receptor5 (TGR5) were highly expressed in esophageal adenocarcinoma (EAC) and precancerous lesions. Here, we examined the expression of Claudin-2 in EAC and precancerous lesions and its association with VDR and TGR5 expression. METHODS Claudin-2 expression was examined by immunohistochemistry on tissue microarrays, containing EAC, high grade dysplasia (HGD), low grade dysplasia (LGD), Barrett's esophagus (BE), columnar cell metaplasia (CM), squamous cell carcinoma (SCC), and squamous epithelium (SE) cases. Intensity (0 to 3) and percentage were scored for each case. High expression was defined as 2-3 intensity in ≥ 10% of cells. RESULTS Claudin-2 was highly expressed in 77% EAC (86/111), 38% HGD (5/13), 61% LGD (17/28), 46% BE (18/39), 45% CM (29/65), 88% SCC (23/26), and 14% SE (11/76). It was significantly more highly-expressed in EAC, SCC and glandular lesions than in SE and more in EAC than in BE and CM. A significant association was found between Claudin-2 expression and VDR and TGR5 expression. No significant association was found between expression of Claudin-2 and age, gender, grade, stage, or patients' survival time in EAC and SCC. CONCLUSIONS We conclude that Claudin-2 expression is significantly associated with bile acid receptors VDR and TGR5 expression. Our studies identify a novel role of a tight junction protein in the development and progression of esophageal mucosal metaplasia, dysplasia and carcinoma.
Collapse
Affiliation(s)
- Sohaib Abu-Farsakh
- Department of Pathology and Laboratory Medicine, University of Rochester, Box 626, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard CU 420630, Rochester, NY, 14642-0630, USA
| | - Amy Lalonde
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard CU 420630, Rochester, NY, 14642-0630, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois College of Medicine, 840 South Wood Street MC 716, Chicago, IL, 60612, USA
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester, Box 626, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|