1
|
Xu L, Tao Q, Zhang Y, Lee FQ, Xu T, Deng LS, Jian ZJ, Zhao J, Lai SY, Zhou YC, Zhu L, Xu ZW. The host cells suppress the proliferation of pseudorabies virus by regulating the PI3K/Akt/mTOR pathway. Microbiol Spectr 2024; 12:e0135124. [PMID: 39436133 PMCID: PMC11619243 DOI: 10.1128/spectrum.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
Pseudorabies virus (PRV), a member of the alpha-herpesviruses, can infect both the nervous and reproductive systems of pigs, causing neonatal mortality and reproductive failure in sows, which incurs substantial economic losses. Neurotropism is a common characteristic of various viruses, allowing them to cross the blood-brain barrier and access the central nervous system. However, the precise mechanisms by which PRV affects the blood-brain barrier are not well understood. To investigate the mechanism of PRV's interaction with the blood-brain barrier and its engagement with the PI3K/Akt signaling pathway during infection, an in vitro monolayer cell model of the blood-brain barrier was established. Our research found that PRV activates Matrix metallopeptidase 2 (MMP2), which degrades Zonula occludens-1 (ZO-1) and consequently enhances the permeability of the blood-brain barrier. PRV infection elevated the transcriptional levels of tissue inhibitor of metalloproteinases 1 (TIMP1) and inhibited its degradation through the ubiquitin-proteasome pathway, leading to higher intracellular concentrations of TIMP1 protein. TIMP1 regulates apoptosis and inhibits PRV replication in mouse brain microvascular endothelial cells through the PI3K/Akt/mTOR signaling pathway. In summary, our study delineates the mechanism through which PRV compromises the blood-brain barrier and provides insights into the host's antiviral defense mechanisms post-infection. IMPORTANCE PRV, known for its neurotropic properties, is capable of inducing severe neuronal damage. Our study discovered that following PRV infection, the expression of MMP2 was upregulated, leading to the degradation of ZO-1. Furthermore, upon PRV infection in the host, the promoter of TIMP1 is significantly activated, resulting in a significant increase in TIMP1 protein levels. This upregulation of TIMP1 inhibits the proliferation of PRV through the PI3K/Akt signaling pathway. This study elucidated the mechanism through which PRV, including the PRV XJ delgE/gI/TK strains, compromises the blood-brain barrier and identifies the antiviral response characterized by the activation of the PI3K/Akt signaling pathway within infected host cells. These findings provide potential therapeutic targets for the clinical management and treatment of PRV.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Feng-qin Lee
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-shuang Deng
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-jie Jian
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-yuan Lai
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-cheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-wen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Gao H, Zhao Y, Zhao L, Wang Z, Yan K, Gao B, Zhang L. The Role of Oxidative Stress in Multiple Exercise-Regulated Bone Homeostasis. Aging Dis 2023; 14:1555-1582. [PMID: 37196112 PMCID: PMC10529750 DOI: 10.14336/ad.2023.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
Bone is a tissue that is active throughout the lifespan, and its physiological activities, such as growth, development, absorption, and formation, are always ongoing. All types of stimulation that occur in sports play an important role in regulating the physiological activities of bone. Here, we track the latest research progress locally and abroad, summarize the recent, relevant research results, and systematically summarize the effects of different types of exercise on bone mass, bone strength and bone metabolism. We found that different types of exercise have different effects on bone health due to their unique technical characteristics. Oxidative stress is an important mechanism mediating the exercise regulation of bone homeostasis. Excessive high-intensity exercise does not benefit bone health but induces a high level of oxidative stress in the body, which has a negative impact on bone tissue. Regular moderate exercise can improve the body's antioxidant defense ability, inhibit an excessive oxidative stress response, promote the positive balance of bone metabolism, delay age-related bone loss and deterioration of bone microstructures and have a prevention and treatment effect on osteoporosis caused by many factors. Based on the above findings, we provide evidence for the role of exercise in the prevention and treatment of bone diseases. This study provides a systematic basis for clinicians and professionals to reasonably formulate exercise prescriptions and provides exercise guidance for patients and the general public. This study also provides a reference for follow-up research.
Collapse
Affiliation(s)
- Haoyang Gao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yilong Zhao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Protective role of intergenerational paternal resistance training on fibrosis, inflammatory profile, and redox status in the adipose tissue of rat offspring fed with a high-fat diet. Life Sci 2022; 295:120377. [DOI: 10.1016/j.lfs.2022.120377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
|
4
|
Vieira Ramos G, de Sousa Neto IV, Toledo-Arruda AC, Marqueti RDC, Vieira RP, Martins MA, Salvini TF, Durigan JLQ. Moderate Treadmill Training Induces Limited Effects on Quadriceps Muscle Hypertrophy in Mice Exposed to Cigarette Smoke Involving Metalloproteinase 2. Int J Chron Obstruct Pulmon Dis 2022; 17:33-42. [PMID: 35027823 PMCID: PMC8752871 DOI: 10.2147/copd.s326894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Long-term cigarette smoke (CS) induces substantive extrapulmonary effects, including musculoskeletal system disorders. Exercise training seems to protect long-term smokers against fiber atrophy in the locomotor muscles. Nevertheless, the extracellular matrix (ECM) changes in response to aerobic training remain largely unknown. Thus, we investigated the effects of moderate treadmill training on aerobic performance, cross-sectional area (CSA), fiber distribution, and metalloproteinase 2 (MMP-2) activity on quadriceps muscle in mice exposed to chronic CS. METHODS Male mice were randomized into four groups: control or smoke (6 per group) and exercise or exercise+smoke (5 per group). Animals were exposed to 12 commercially filtered cigarettes per day (0.8 mg of nicotine, 10 mg of tar, and 10 mg of CO per cigarette). The CSA, fibers distribution, and MMP-2 activity by zymography were assessed after a period of treadmill training (50% of maximal exercise capacity for 60 min/day, 5 days/week) for 24 weeks. RESULTS The CS exposure did not change CSA compared to the control group (p>0.05), but minor fibers in the frequency distribution (<1000 µm2) were observed. Long-term CS exposure attenuated CSA increases in exercise conditions (smoke+exercise vs exercise) while did not impair aerobic performance. Quadriceps CSA increased in mice nonsmoker submitted to aerobic training (p = 0.001). There was higher pro-MMP-2 activity in the smoke+exercise group when compared to the smoke group (p = 0.01). Regarding active MMP-2, the exercise showed higher values when compared to the control group (p = 0.001). CONCLUSION Moderate treadmill training for 24 weeks in mice exposed to CS did not modify CSA, despite inducing higher pro-MMP-2 activity in the quadriceps muscle, suggesting limited effects on ECM remodeling. Our findings may contribute to new insights into molecular mechanisms for CS conditions.
Collapse
Affiliation(s)
- Gracielle Vieira Ramos
- Physical Therapy Division, University of Brasilia, Brasília, DF, Brazil
- Department of Physical Therapy, University Paulista, Brasília, DF, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Alessandra Choqueta Toledo-Arruda
- Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodolfo P Vieira
- Universidade Brasil, Post-Graduation Program in Bioengineering, São Paulo, Brazil
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE) and Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
- Federal University of Sao Paulo, Post-Graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia F Salvini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|